
Abstract--- In this manuscript we introduce parallel-

prefix architecture for the design ofmodulo2n+1 adder. The 

proposed architecture is built around a sparse carry 

computation unit that computes only some of the carries of 

the modulo 2n+1addition.This sparse approach is enabled by 

the introduction of the inverted circular idem potency 

property of the parallel-prefix carry operator and its 

regularity and area efficiency are further enhanced by the 

introduction of a new prefix operator. The resulting 

diminished-1 adders can be implemented in smaller area 

and consume less power compared to all earlier proposals, 

while maintaining a high operation speed. 

Index Terms--- Computer Arithmetic, Modulo2n+1 

Adders, Residue Number System, Diminished-1 

Representation, Parallel-prefix Carry Computation 

I. INTRODUCTION 

Modulo arithmetic has been used in digital computing 

systems for many years. In particular,modulo2n+1 

arithmetic appears to play an important role in a variety of 

applications. Arithmetic modulo2n+1 is commonly met in 

their sidue number system (RNS) which is an arithmetic 

system well-suited to applications in which the operations 

are limited to addition, subtraction and multiplication. The 

RNS has been used for the design of digital signal 

processors FIR filters and communication components. 

Modulo 2n+1has found applicability in a variety of fields 

ranging from pseudorandom number generation and 

cryptography [1], [2], [3], up to convolution computations 

without round-off errors [4], [5], [6]. Also, modulo 

2n+1operators are commonly included in residue number 
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system (RNS) applications [7], [8], [9]. The RNS is an 

arithmetic system which decomposes a number into parts 

(residues) and performs arithmetic operations in parallel for 

each residue without the need of carry propagation among 

them, leading to significant speedup over the corresponding 

binary operations. RNS is well suited to applications that are 

rich of addition/subtraction and multiplication operations 

and has been adopted in the design of digital signal 

processors [7], [10], [11], FIR filters [12], [13], [14] and 

communication components [15], [16], [17], offering in 

several cases apart from enhanced operation speed, low-

power characteristics [18]. 

The complexity of a modulo 2n+1arithmetic unit is 

determined by the representation chosen for the input 

operands. Three representations have been considered; 

namely, the normal weighted one, the diminished-1 [19] and 

the signed-LSB representations [20]. We only consider the 

first two representations in the following, since the adoption 

of the signed-LSB representation does not lead to more 

efficient circuits in delay or area terms. In every case, when 

performing arithmetic operations modulo 2n+1the input 

operands and the results are limited between 0 and 2n. 

In the normal weighted representation, each operand 

requires n+1 bits for its representation but only utilizes 2
n
+1 

representations out of the 2n+1 that these can provide. A 

denser encoding of the input operands and simplified 

arithmetic operations modulo 2n+1 are offered by the 

diminished-1 representation. In the diminished-1 

representation, A is represented as az A
*, where az is a single

bit, often called the zero indication bit, and A*, is an n-bit 

vector, often called the number part. If A > 0, then az= 0 and 

A* = A -1, whereas for A = 0; az= 1, and A* = 0. For

example, the diminished-1 representation of A =9 modulo 17 

is 010002. 
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II. PRELIMINARIES

Suppose that A = An-1 ,An-2 , ,…..A0  and B= Bn-1 ,Bn-2 , 

,…..B0  represent the two numbers to be added and S= Sn-1 

,Sn-2 , ,…..S0  denotes their sum. An adder can be considered 

as a three-stage circuit. The preprocessing stage computes 

the carry-generate bits Gi, the carry-propagate bits Pi, and 

the half-sum bits Hi, for every i, 0 ≤ i ≤ n-1, according to 

Where ·, +and ɵ  denote logical AND, OR, and 

exclusive-OR, respectively. The second stage of the adder, 

hereafter called the carry computation unit, computes the 

carry signals Ci, for 0 ≤I ≤ n-1 using the carry generate and 

carry propagate bits Gi and Pi. The third stage computes the 

sum bits according to 

Carry computation is transformed into a parallel prefix 

problem using the O operator, which associates pairs of 

generate and propagate signals and was defined in [35] as 

In a series of associations of consecutive 

generate/propagate pairs (G, P), the notation (Gk:j, Pk:j), 

with k > j, is used to denote the group generate/propagate 

term produced out of bits k, k-1, . . . , j, that is, 

Since every carry Ci = Gi:0, a number of algorithms 

have been introduced for computing all the carries using 

only Ooperators. Fig. 1 presents the most well-known 

approaches for the design of an 8-bit adder, while Fig. 2 

depicts the logic-level implementation of the basic cells 

used throughout the paper. 

For large word lengths, the design of sparse parallel 

prefix adders is preferred, since the wiring and area of the 

design are significantly reduced without sacrificing delay. 

The design of sparse adders relies on the use of a sparse 

parallel-prefix carry computation unit and carry-select (CS) 

blocks. Only the carries at the boundaries of the carry-select 

blocks are computed, saving considerable amount of area in 

the carry-computation unit [39]. A 32-bit adder with 4-bit 

sparseness is shown in Fig. 3a. The carry select block 

computes two sets of sum bits corresponding to the two 

possible values of the incoming carry. When the actual 

carry is computed, it selects the correct sum without any 

delay overhead. A possible logic-level implementation of a 

4-bit carry-select block is shown in Fig. 3b. 

Fig. 1: Examples of 8-Bit Parallel-Prefix Structures for 

Integer Adders. (a) Kogge-Stone [36], (b) Ladner-Fischer 

[37], and (c) one Representative of the Knowles [38] 

Family of Adders 

Fig. 2: The Logic-Level Implementation of the Basic Cells 

Used in Parallel-Prefix Adders 

III. MODULO 2N+1 ADDERS

Diminished-1 modulo 2n+1 addition is more complex 

since special care is required when at least one of the input 

operands is zero (100 . . . 0). The sum of a diminished-1 

modulo adder is derived according to the following cases: 

When none of the input operands is zero (az bz≠0) 

their number parts A* and B* are added 

modulo2n+1. This operation as discussed in the 

following, can be handled by an IEAC adder.  

When one of the two inputs is zero the result is 

equal to the nonzero operand. 

When both operands are zero, the result is zero. 
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In any case that the result is equal to zero (cases 1 or 3), 

the zero-indication bit of the sum needs to be set and the 

number part of the sum should be equal to the all-zero 

vector. According to the above, a true modulo addition in a 

diminished-1 adder is needed only in case 1, while in the 

other cases the sum is known in advance. 

When none of the input operands is zero, az bz≠1, the 

number part of the diminished-1 sum is derived by the 

number parts A* and B*of the input operands as follows: 

Fig. 3: Parallel Prefix Modulo 28+1adders: (a) Using an 

Additional Carry-Increment Stage and (b) Recirculating the 

End Around Carry within the Existing log2 n Prefix Levels 

Equation (3) reveals that an IEAC adder can be used for 

providing the number part in this case. Fig. 3a [22], [23] 

presents the implementation of an IEAC adder by the 

addition of a carry increment stage to an integer parallel 

prefix adder. 

IV. NEW SPARSE MODULO 2N+1 ADDERS

Sparse refer to the design of the adder where a carry 

select block will be used to obtain the output sum. The 

possible outputs of sum will be calculated and the output 

carry will select which output sum will be selected. The 

design is based at parallel-prefix adders. In the sparse carry 

computation unit for sparse modulo 2n +1 diminished 

adders some prefix operators are doubled up, since 2 carry 

computations need to be performed in parallel; one on 

normal propagate and generate signals, while the other on 

their complements. The problem gets worse when the input 

operands’ width is not a power of two. So there is still a lot 

of space for improvement. This problem is removed by 

introducing a new prefix operator and an even simpler carry 

computation unit. While calculating the carry for the spares 

adder we found that several operators double up since the 

operators is calculated in parallel. For larger adders, 

significantly more operators need to be doubled up, leading 

to increased area and wiring. To overcome this problem, we 

need a prefix operator that can associate the operation. We 

introduce a new operator, hereafter called gray operator. 

Fig. 4: Modulo 216+1 Diminished Adder Using a Sparse 

Carry Computation Unit 

Fig. 5: Sparse-4 Modulo216+1 Diminished-1 Adder 

Fig. 6: Gray Prefix Operator; Notation and Implementation 
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Diminished-1 modulo 2n+1 addition is not used for 

addition of zero operands. When the input operand is zero, 

it should be handled separately. Zero treatment leads to 

slow and area-consuming implementations. 

Architecture of Zero handling unexceptional modulo 

adders will be designed and the performance evaluation by 

means of area, delay, power dissipation will be compared 

with existing modulo adder. The problem of designing an 

Extra hardware for handling Zero addition problem is 

recovered in our proposal by implementing a MUX based 

selection line is used to decide whether to perform addition 

in case of input zero. 

Fig. 7: Adder with Zero Handling 

Table 1: Operation of Adder in Fig7 

A B OR 
o/p 

AND 
o/p 

Select Output 

0 0 0 0 0 0 

0 B B 0 0 B 

A 0 A 0 0 A 

A B - AB 1 A+B mod 

V. APPLICATION (FIR FILTER) 

A Filter is frequency selective network, which is used to 

modify an input signal in order to facilitate further 

processing. Basically there are two types of filters-analog 

and digital. Digital Filters are widely used in different areas, 

because Digital filters have the potential to attain much 

better signal to noise ratio than analog filters. The digital 

filter performs noiseless mathematical operations at each 

intermediate step in the transform and their precise 

reproducibility allows design engineers to achieve 

performance levels that are difficult to obtain with analog 

filters Digital filters operate on numbers opposite to analog 

filters, which operates on voltages. The basic operation of 

digital filter is to take a sequence of input numbers and 

compute a different sequence of output numbers. There 

exists a range of different digital filters. FIR and IIR filters 

are the two common filter forms. A drawback of IIR filters 

is that the closed-form IIR designs are preliminary limited 

to low pass, band pass, and high pass filters, etc. secondly 

FIR filters can have precise linear phase. Also, in the case 

of FIR filters, closed-form design equations do not exist and 

the design problem for FIR filters is much more under 

control than the IIR design problem. A FIR filter is a filter 

structure that can be used to implement almost any sort of 

frequency response digitally. It is usually implemented by 

using a series of delays, multipliers, and adders to create the 

filter's output. The architecture of FIR filter is shown in Fig 

8. 

Fig. 8: FIR Filter Architecture Canonical Form 

VI. SIMULATION RESULTS

Simulation Result of Kogge stone adder in fig 1(a) 
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Simulation Result of Lander fishner adder in fig 1(b) 

Simulation Result of Knowles adder in fig 1(c) 

Simulation Result of Parallel prefix modulo 28+1 adders 

using an additional carry-increment stage and recirculating 

the end around carry within the Existing log2 n prefix levels 

in fig 3. 

Simulation Result of Sparse-4 modulo 216+1 

diminished-1 adder in fig 5. 

Simulation Result of FIR Filter in fig 8. 

VII. PERFORMANCE COMPARISON

The proposed multiplier is synthesized in Xilinx 13.1 

ISE simulator to find optimized delay and area of different 

modulo adder architectures .The modulo adders are 

compared that can be seen below 

Table 2: Comparison of 8 bit Adders 

Kogge 
stone(
8bit) 

fig 
1(a) 

Lander 
Fisher(8b

it) fig 

1(b) 

Knowl
es 

(8bit) 

fig 1(c) 

Parallel 
Prefix(8b

it) fig 

3(a) 

Parallel 
Prefix(8b

it) fig 

3(b) 

Delay 9.959n
s 

11.003ns 9.082n
s 

14.506ns 9.09ns 

Slices 11 8 10 19 17 

4 i/p 

LUT’s 

20 14 19 34 31 

IO’s 24 24 24 24 24 

Bonded 
IOB’s 

24 24 24 24 24 

Logic 
Levels 

7 8 6 11 6 

Table 3: Comparison of 16 bit Adders 

216+1 Diminished 

16 bit 

216+1 Sparse 4 

16 bit 

Delay 13.303ns 7.577ns 

Slices 30 8 

4 i/p LUT’s 50 16 

IO’s 48 48 

Bonded IOB’s 48 48 

Logic levels 11 19 

Table 4: Comparison of Filter Output 

Using216+1 
Diminished16 bit 

Using216+1 Sparse 
4 16 bit 

Delay 24.962ns 17.778ns 

Slices 40 24 

4 i/p 
LUT’s 

70 46 

IO’s 56 56 

Bonded 
IOB’s 

40 40 

Logic 
levels 

11 14 

VIII. CONCLUSION

Efficient modulo 2n+1adders are appreciated in a 

variety of computer applications including all RNS 

implementations. 

In this paper, a contribution is offered to the modulo 

2n+1addition problem. A novel architecture has been 

proposed that uses a sparse totally regular parallel-prefix 
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carry computation unit. This architecture was derived by 

proving the inverted circular idem potency property of the 

parallel-prefix carry operator in modulo 2n+1addition and 

by introducing a new prefix operator that eliminates the 

need for a double computation tree in the earlier fastest 

proposals. The experimental results indicate that the 

proposed architecture heavily outperforms the earlier 

solutions in implementation area and power consumption, 

while offering a high execution rate. The drawback for the 

modulo adder is that it is not used for adding zero operands. 

The adder is proposed that will eliminate this drawback, and 

zero operands can be added effectively and fast. An FIR 

filter is implemented using the proposed adders. 
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