
Abstract--- In this manuscript we introduce parallel-

prefix architecture for the design ofmodulo2n+1 adder. The

proposed architecture is built around a sparse carry

computation unit that computes only some of the carries of

the modulo 2n+1addition.This sparse approach is enabled by

the introduction of the inverted circular idem potency

property of the parallel-prefix carry operator and its

regularity and area efficiency are further enhanced by the

introduction of a new prefix operator. The resulting

diminished-1 adders can be implemented in smaller area

and consume less power compared to all earlier proposals,

while maintaining a high operation speed.

Index Terms--- Computer Arithmetic, Modulo2n+1

Adders, Residue Number System, Diminished-1

Representation, Parallel-prefix Carry Computation

I. INTRODUCTION

Modulo arithmetic has been used in digital computing

systems for many years. In particular,modulo2n+1

arithmetic appears to play an important role in a variety of

applications. Arithmetic modulo2n+1 is commonly met in

their sidue number system (RNS) which is an arithmetic

system well-suited to applications in which the operations

are limited to addition, subtraction and multiplication. The

RNS has been used for the design of digital signal

processors FIR filters and communication components.

Modulo 2n+1has found applicability in a variety of fields

ranging from pseudorandom number generation and

cryptography [1], [2], [3], up to convolution computations

without round-off errors [4], [5], [6]. Also, modulo

2n+1operators are commonly included in residue number

Mohammed Mosin A. Junjwadkar, Industrial Electronics, ECE

Department, KLSVDRIT, Haliyal, India. E-mail: 2vd12lie12@gmail.com

Virapax M. Chougala, Assistant Professor, ECE Department,

KLSVDRIT, Haliyal, India.

system (RNS) applications [7], [8], [9]. The RNS is an

arithmetic system which decomposes a number into parts

(residues) and performs arithmetic operations in parallel for

each residue without the need of carry propagation among

them, leading to significant speedup over the corresponding

binary operations. RNS is well suited to applications that are

rich of addition/subtraction and multiplication operations

and has been adopted in the design of digital signal

processors [7], [10], [11], FIR filters [12], [13], [14] and

communication components [15], [16], [17], offering in

several cases apart from enhanced operation speed, low-

power characteristics [18].

The complexity of a modulo 2n+1arithmetic unit is

determined by the representation chosen for the input

operands. Three representations have been considered;

namely, the normal weighted one, the diminished-1 [19] and

the signed-LSB representations [20]. We only consider the

first two representations in the following, since the adoption

of the signed-LSB representation does not lead to more

efficient circuits in delay or area terms. In every case, when

performing arithmetic operations modulo 2n+1the input

operands and the results are limited between 0 and 2n.

In the normal weighted representation, each operand

requires n+1 bits for its representation but only utilizes 2
n
+1

representations out of the 2n+1 that these can provide. A

denser encoding of the input operands and simplified

arithmetic operations modulo 2n+1 are offered by the

diminished-1 representation. In the diminished-1

representation, A is represented as az A
*, where az is a single

bit, often called the zero indication bit, and A*, is an n-bit

vector, often called the number part. If A > 0, then az= 0 and

A* = A -1, whereas for A = 0; az= 1, and A* = 0. For

example, the diminished-1 representation of A =9 modulo 17

is 010002.

Efficient Modulo Adder Architectures

Mohammed Mosin A. Junjwadkar and Virapax M. Chougala

Journal on Science Engineering & Technology
Vo1ume 1, No. 03, September 2014 532

ISSN: 2349-6657 @ JSET

II. PRELIMINARIES

Suppose that A = An-1 ,An-2 , ,…..A0 and B= Bn-1 ,Bn-2 ,

,…..B0 represent the two numbers to be added and S= Sn-1

,Sn-2 , ,…..S0 denotes their sum. An adder can be considered

as a three-stage circuit. The preprocessing stage computes

the carry-generate bits Gi, the carry-propagate bits Pi, and

the half-sum bits Hi, for every i, 0 ≤ i ≤ n-1, according to

Where ·, +and ɵ denote logical AND, OR, and

exclusive-OR, respectively. The second stage of the adder,

hereafter called the carry computation unit, computes the

carry signals Ci, for 0 ≤I ≤ n-1 using the carry generate and

carry propagate bits Gi and Pi. The third stage computes the

sum bits according to

Carry computation is transformed into a parallel prefix

problem using the O operator, which associates pairs of

generate and propagate signals and was defined in [35] as

In a series of associations of consecutive

generate/propagate pairs (G, P), the notation (Gk:j, Pk:j),

with k > j, is used to denote the group generate/propagate

term produced out of bits k, k-1, . . . , j, that is,

Since every carry Ci = Gi:0, a number of algorithms

have been introduced for computing all the carries using

only Ooperators. Fig. 1 presents the most well-known

approaches for the design of an 8-bit adder, while Fig. 2

depicts the logic-level implementation of the basic cells

used throughout the paper.

For large word lengths, the design of sparse parallel

prefix adders is preferred, since the wiring and area of the

design are significantly reduced without sacrificing delay.

The design of sparse adders relies on the use of a sparse

parallel-prefix carry computation unit and carry-select (CS)

blocks. Only the carries at the boundaries of the carry-select

blocks are computed, saving considerable amount of area in

the carry-computation unit [39]. A 32-bit adder with 4-bit

sparseness is shown in Fig. 3a. The carry select block

computes two sets of sum bits corresponding to the two

possible values of the incoming carry. When the actual

carry is computed, it selects the correct sum without any

delay overhead. A possible logic-level implementation of a

4-bit carry-select block is shown in Fig. 3b.

Fig. 1: Examples of 8-Bit Parallel-Prefix Structures for

Integer Adders. (a) Kogge-Stone [36], (b) Ladner-Fischer

[37], and (c) one Representative of the Knowles [38]

Family of Adders

Fig. 2: The Logic-Level Implementation of the Basic Cells

Used in Parallel-Prefix Adders

III. MODULO 2N+1 ADDERS

Diminished-1 modulo 2n+1 addition is more complex

since special care is required when at least one of the input

operands is zero (100 . . . 0). The sum of a diminished-1

modulo adder is derived according to the following cases:

When none of the input operands is zero (az bz≠0)

their number parts A* and B* are added

modulo2n+1. This operation as discussed in the

following, can be handled by an IEAC adder.

When one of the two inputs is zero the result is

equal to the nonzero operand.

When both operands are zero, the result is zero.

Journal on Science Engineering & Technology
Vo1ume 1, No. 03, September 2014 533

ISSN: 2349-6657 @ JSET

In any case that the result is equal to zero (cases 1 or 3),

the zero-indication bit of the sum needs to be set and the

number part of the sum should be equal to the all-zero

vector. According to the above, a true modulo addition in a

diminished-1 adder is needed only in case 1, while in the

other cases the sum is known in advance.

When none of the input operands is zero, az bz≠1, the

number part of the diminished-1 sum is derived by the

number parts A* and B*of the input operands as follows:

Fig. 3: Parallel Prefix Modulo 28+1adders: (a) Using an

Additional Carry-Increment Stage and (b) Recirculating the

End Around Carry within the Existing log2 n Prefix Levels

Equation (3) reveals that an IEAC adder can be used for

providing the number part in this case. Fig. 3a [22], [23]

presents the implementation of an IEAC adder by the

addition of a carry increment stage to an integer parallel

prefix adder.

IV. NEW SPARSE MODULO 2N+1 ADDERS

Sparse refer to the design of the adder where a carry

select block will be used to obtain the output sum. The

possible outputs of sum will be calculated and the output

carry will select which output sum will be selected. The

design is based at parallel-prefix adders. In the sparse carry

computation unit for sparse modulo 2n +1 diminished

adders some prefix operators are doubled up, since 2 carry

computations need to be performed in parallel; one on

normal propagate and generate signals, while the other on

their complements. The problem gets worse when the input

operands’ width is not a power of two. So there is still a lot

of space for improvement. This problem is removed by

introducing a new prefix operator and an even simpler carry

computation unit. While calculating the carry for the spares

adder we found that several operators double up since the

operators is calculated in parallel. For larger adders,

significantly more operators need to be doubled up, leading

to increased area and wiring. To overcome this problem, we

need a prefix operator that can associate the operation. We

introduce a new operator, hereafter called gray operator.

Fig. 4: Modulo 216+1 Diminished Adder Using a Sparse

Carry Computation Unit

Fig. 5: Sparse-4 Modulo216+1 Diminished-1 Adder

Fig. 6: Gray Prefix Operator; Notation and Implementation

Journal on Science Engineering & Technology
Vo1ume 1, No. 03, September 2014 534

ISSN: 2349-6657 @ JSET

Diminished-1 modulo 2n+1 addition is not used for

addition of zero operands. When the input operand is zero,

it should be handled separately. Zero treatment leads to

slow and area-consuming implementations.

Architecture of Zero handling unexceptional modulo

adders will be designed and the performance evaluation by

means of area, delay, power dissipation will be compared

with existing modulo adder. The problem of designing an

Extra hardware for handling Zero addition problem is

recovered in our proposal by implementing a MUX based

selection line is used to decide whether to perform addition

in case of input zero.

Fig. 7: Adder with Zero Handling

Table 1: Operation of Adder in Fig7

A B OR
o/p

AND
o/p

Select Output

0 0 0 0 0 0

0 B B 0 0 B

A 0 A 0 0 A

A B - AB 1 A+B mod

V. APPLICATION (FIR FILTER)

A Filter is frequency selective network, which is used to

modify an input signal in order to facilitate further

processing. Basically there are two types of filters-analog

and digital. Digital Filters are widely used in different areas,

because Digital filters have the potential to attain much

better signal to noise ratio than analog filters. The digital

filter performs noiseless mathematical operations at each

intermediate step in the transform and their precise

reproducibility allows design engineers to achieve

performance levels that are difficult to obtain with analog

filters Digital filters operate on numbers opposite to analog

filters, which operates on voltages. The basic operation of

digital filter is to take a sequence of input numbers and

compute a different sequence of output numbers. There

exists a range of different digital filters. FIR and IIR filters

are the two common filter forms. A drawback of IIR filters

is that the closed-form IIR designs are preliminary limited

to low pass, band pass, and high pass filters, etc. secondly

FIR filters can have precise linear phase. Also, in the case

of FIR filters, closed-form design equations do not exist and

the design problem for FIR filters is much more under

control than the IIR design problem. A FIR filter is a filter

structure that can be used to implement almost any sort of

frequency response digitally. It is usually implemented by

using a series of delays, multipliers, and adders to create the

filter's output. The architecture of FIR filter is shown in Fig

8.

Fig. 8: FIR Filter Architecture Canonical Form

VI. SIMULATION RESULTS

Simulation Result of Kogge stone adder in fig 1(a)

Journal on Science Engineering & Technology
Vo1ume 1, No. 03, September 2014 535

ISSN: 2349-6657 @ JSET

Simulation Result of Lander fishner adder in fig 1(b)

Simulation Result of Knowles adder in fig 1(c)

Simulation Result of Parallel prefix modulo 28+1 adders

using an additional carry-increment stage and recirculating

the end around carry within the Existing log2 n prefix levels

in fig 3.

Simulation Result of Sparse-4 modulo 216+1

diminished-1 adder in fig 5.

Simulation Result of FIR Filter in fig 8.

VII. PERFORMANCE COMPARISON

The proposed multiplier is synthesized in Xilinx 13.1

ISE simulator to find optimized delay and area of different

modulo adder architectures .The modulo adders are

compared that can be seen below

Table 2: Comparison of 8 bit Adders

Kogge
stone(
8bit)

fig
1(a)

Lander
Fisher(8b

it) fig

1(b)

Knowl
es

(8bit)

fig 1(c)

Parallel
Prefix(8b

it) fig

3(a)

Parallel
Prefix(8b

it) fig

3(b)

Delay 9.959n
s

11.003ns 9.082n
s

14.506ns 9.09ns

Slices 11 8 10 19 17

4 i/p

LUT’s

20 14 19 34 31

IO’s 24 24 24 24 24

Bonded
IOB’s

24 24 24 24 24

Logic
Levels

7 8 6 11 6

Table 3: Comparison of 16 bit Adders

216+1 Diminished

16 bit

216+1 Sparse 4

16 bit

Delay 13.303ns 7.577ns

Slices 30 8

4 i/p LUT’s 50 16

IO’s 48 48

Bonded IOB’s 48 48

Logic levels 11 19

Table 4: Comparison of Filter Output

Using216+1
Diminished16 bit

Using216+1 Sparse
4 16 bit

Delay 24.962ns 17.778ns

Slices 40 24

4 i/p
LUT’s

70 46

IO’s 56 56

Bonded
IOB’s

40 40

Logic
levels

11 14

VIII. CONCLUSION

Efficient modulo 2n+1adders are appreciated in a

variety of computer applications including all RNS

implementations.

In this paper, a contribution is offered to the modulo

2n+1addition problem. A novel architecture has been

proposed that uses a sparse totally regular parallel-prefix

Journal on Science Engineering & Technology
Vo1ume 1, No. 03, September 2014 536

ISSN: 2349-6657 @ JSET

carry computation unit. This architecture was derived by

proving the inverted circular idem potency property of the

parallel-prefix carry operator in modulo 2n+1addition and

by introducing a new prefix operator that eliminates the

need for a double computation tree in the earlier fastest

proposals. The experimental results indicate that the

proposed architecture heavily outperforms the earlier

solutions in implementation area and power consumption,

while offering a high execution rate. The drawback for the

modulo adder is that it is not used for adding zero operands.

The adder is proposed that will eliminate this drawback, and

zero operands can be added effectively and fast. An FIR

filter is implemented using the proposed adders.

REFERENCES

[1] X. Lai and J.L. Massey, “A Proposal for a New
Block Encryption Standard,” EUROCRYPT, D.W.

Davies, ed., vol. 547, pp. 389-404,Springer, 1991.

[2] R. Zimmermann et al., “A 177 Mb/s VLSI

Implementation of the International Data

Encryption Algorithm,” IEEE J. Solid-State

Circuits, vol. 29, no. 3, pp. 303-307, Mar. 1994.

[3] H. Nozaki et al., “Implementation of RSA

Algorithm Based on RNS Montgomery

Multiplication,” Proc. Third Int’l Workshop

Cryptographic Hardware and Embedded Systems,

pp. 364-376, 2001.
[4] Y. Morikawa, H. Hamada, and K. Nagayasu,

“Hardware Realisation of High Speed Butterfly for

the Maximal Length Fermat Number Transform,”

Trans. IECE, vol. J66-D, no. 1, pp. 81-88, 1983.

[5] M. Benaissa, S.S. Dlay, and A.G.J. Holt, “CMOS

VLSI Design of a High-Speed Fermat Number

Transform Based Convolver/Correlator Using

Three-Input Adders,” Proc. IEE, vol. 138, no. 2,

pp. 182-190, Apr. 1991.

[6] V.K. Zadiraka and E.A. Melekhina, “Computer

Implementation of Efficient Discrete-Convolution

Algorithms,” Cybernetics and Systems Analysis,
vol. 30, no. 1, pp. 106-114, Jan. 1994.

[7] M.A. Soderstrand et al., Residue Number System

Arithmetic: Modern Applications in Digital Signal

Processing. IEEE Press, 1986.

[8] P.V.A. Mohan, Residue Number Systems:

Algorithms and Architectures. Springer-Verlag,

2002.

[9] A. Omondi and B. Premkumar, Residue Number

Systems: Theory and Implementations. Imperial

College Press, 2007.

[10] J. Ramirez et al., “RNS-Enabled Digital Signal

Processor Design,”Electronics Letters, vol. 38, no.

6, pp. 266-268, Mar. 2002.

[11] J. Ramirez et al., “Design and Implementation of

High Performance RNS Wavelet Proccessors

Using Custom IC Technologies,” J. VLSI Signal

Processing Systems, vol. 34, no. 3,pp. 227-237,
July 2003.

[12] J. Ramirez et al., “High Performance, Reduced

Complexity Programmable RNS-FPL Merged FIR

Filters,” Electronics Letters,vol. 38, no. 4, pp. 199-

200, Feb. 2002.

[13] G.C. Cardarilli, A. Nannarelli, and M. Re,

“Reducing Power Dissipation in FIR Filters Using

the Residue Number System,” Proc. 43rd IEEE

Midwest Symp. Circuits and Systems, pp. 320-

323, Aug. 2000.

[14] Y. Liu and E.M.-K. Lai, “Moduli Set Selection and

Cost Estimation for RNS-Based FIR Filter and
Filter Bank Design,” Design Automation for

Embedded Systems, vol. 9, no. 2, pp. 123-139,

June 2004.

[15] U. Meyer-Base, A. Garcia, and F. Taylor,

“Implementation of a Communications

Channelizer Using FPGAs and RNS Arithmetic,”

J. VLSI Signal Processing Systems, vol. 28, nos.

1/2, pp. 115-128, May/June 2001.

[16] J. Ramirez et al., “Fast RNS FPL-Based

Communications Receiver Design and

Implementation,” Proc. 12th Int’l Conf. Field
Programmable Logic, pp. 472-481, 2002.

[17] M. Panella and G. Martinelli, “An RNS

Architecture for Quasi- Chaotic Oscillators,” J.

VLSI Signal Processing Systems, vol. 33, no. 1,

pp. 199-220, Jan./Feb. 2003.

[18] R. Chokshi, K.S. Berezowski, A. Shrivastava, and

S.J. Piestrak,“Exploiting Residue Number System

for Power-Efficient Digital Signal Processing in

Embedded processors,” Proc. Int’l Conf.

Compilers, Architecture, and Synthesis for

Embedded Systems (CASES’09), pp. 19-28, 2009.
[19] L.M. Leibowitz, “A Simplified Binary Arithmetic

for the Fermat Number Transform,” IEEE Trans.

Acoustics, Speech and Signal Processing, vol.

ASSP-24, no. 5, pp. 356-359, Oct. 1976.

[20] G. Jaberipur and B. Parhami, “Unified Approach

to the Design of Modulo-(2n -1) Adders Based on

Signed-LSB Representation of Residues,” Proc.

19th IEEE Symp. Computer Arithmetic, pp. 57-

64,2009.

[21] R. Zimmermann, “Binary Adder Architectures for

Cell-Based VLSI and Their Synthesis,” PhD

dissertation, Swiss Fed. Inst. Of Technology, 1997.
[22] R. Zimmerman, “Efficient VLSI Implementation

of Modulo 2n+1Addition and Multiplication,”

Proc. 14th IEEE Symp. Computer Arithmetic, pp.

158-167, Apr. 1999.

Journal on Science Engineering & Technology
Vo1ume 1, No. 03, September 2014 537

ISSN: 2349-6657 @ JSET

[23] H.T. Vergos, C. Efstathiou, and D. Nikolos,

“Diminished-One Modulo 2n+1Adder Design,”

IEEE Trans. Computers, vol. 51, no. 12, pp. 1389-

1399, Dec. 2002.

[24] C. Efstathiou, H.T. Vergos, and D. Nikolos,

“Modulo 2n -1 Adder Design Using Select Prefix

Blocks,” IEEE Trans. Computers, vol. 52, no. 11,
pp. 1399-1406, Nov. 2003.

[25] H.T. Vergos and C. Efstathiou, “Efficient Modulo

2n+1Adder Architectures,” Integration, the VLSI

J., vol. 42, no. 2, pp. 149-157,Feb. 2009.

[26] G. Dimitrakopoulos and D. Nikolos, “High-Speed

Parallel-Prefix VLSI Ling Adders,” IEEE Trans.

Computers, vol. 54, no. 2, pp. 225-231, Feb. 2005.

[27] Rakhi Thakur and Kavita Khare “High Speed

FPGA Implementation of FIR Filter for DSP

Applications”,International Journal of Modeling

and Optimization, Vol. 3, No. 1, February 2013

Journal on Science Engineering & Technology
Vo1ume 1, No. 03, September 2014 538

ISSN: 2349-6657 @ JSET

