
Abstract--- Automatic segmentation of the primary 

object in a video clip is a challenging problem as there is no 

prior knowledge of the primary object. Most existing 

techniques thus adapt an iterative approach for foreground 

and background appearance modeling. However, these 

approaches may rely on good initialization and can be 

easily trapped in local optimal. In addition, they are usually 

time consuming and difficult for analyzing videos. To solve 

this problem, recent work introduces a new approach for 

automatic primary video object segmentation. The input is a 

plain video clip without any annotations and the output is a 

pixel-wise spatio-temporal foreground vs. background 

segmentation of the entire sequence.  However how to 

handling essentially unconstrained settings, becomes very 

difficult task by using automatic primary video object 

segmentation based on Markov Random Field (MRF). So in 

this work proposed new primary video object segmentation 

by following Min-Cut Max Flow in MRF (MCMF-MRF) 

.This work present a MCMF-MRF technique for separating 

foreground objects from the background in a video. 

MCMF-MRF method is fast, fully automatic, and makes 

minimal assumptions about the video. This enables 

handling essentially unconstrained settings, including 

rapidly moving background, arbitrary object motion and 

appearance, and non-rigid deformations and articulations. 

Similar too many existing image and video object 

segmentation approaches, we cast the segmentation to a 

two-class node labeling problem in a MCMF-MRF. Within 
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the MRF graph, each node is modeled as a super pixel, and 

will be labeled as either foreground or background in the 

segmentation process. It embeds the appearance constraint 

as auxiliary nodes and edges in the MCMF-MRF structure, 

and can optimize both the segmentation and appearance 

model parameters simultaneously in one MCMF. The 

extensive experimental evaluations validate the superiority 

of the proposed MCMF-MRF structure over the state-of-

the-art methods, in both efficiency and effectiveness. 

Index Terms--- Automatic, Primary, Video, Object, 

Segmentation, Graph Cut, Appearance Modeling, Min-Cut 

Max Flow in MRF (MCMF-MRF). 

I. INTRODUCTION 
Video object segmentation is a well-researched problem 

in the computer vision community and is a prerequisite for a 

variety of high-level vision applications, including content 

based video retrieval, video summarization, activity 

understanding and targeted content replacement. Both fully 

automatic methods and methods requiring manual 

initialization have been proposed for video object 

segmentation. In the latter class of approaches, [1] need 

annotations of object segments in key frames for 

initialization. 

The first row shows frames from a video. The second 

row shows key object proposals (in red boundaries) 

extracted by [2]. “?” indicates that no proposal related to the 

primary object was found by the method. The third row 

shows primary object proposals selected by the proposed 

method. Note that the proposed method was able to find 

primary object proposals in all frames. The results in row 2 
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and 3 are prior to per-pixel segmentation. In this paper we 

demonstrate that temporally dense extraction of primary 

object proposals results in significant improvement in 

object segmentation performance. 

Optimization techniques employing motion and 

appearance constraints are then used to propagate the 

segments to all frames. Other methods ([3]) only require 

accurate object region annotation for the first frame, then 

employ region tracking to segment the rest of frames into 

object and background regions. Note that, the 

aforementioned semi-automatic techniques generally give 

good segmentation results. However, most computer vision 

applications involve processing of large amounts of video 

data, which makes manual initialization cost prohibitive. 

Consequently, a large number of automatic methods have 

also been proposed for video object segmentation. A subset 

of these methods employs motion grouping [4] for object 

segmentation. Other methods [5] use appearance cues to 

segment each frame first and then use both appearance and 

motion constraints for a bottom-up final segmentation. 

Methods based on efficient optimization frameworks for 

spatiotemporal grouping of pixels for video segmentation. 

However, all of these automatic methods do not have an 

explicit model of how an object looks or moves, and 

therefore, the segments usually don’t correspond to a 

particular object but only to image regions that exhibit 

coherent appearance or motion. 

The Primary object in a video sequence can be defined 

as the object that is locally salient and present in most of the 

frames [6]. The target of automatic primary video object 

segmentation is to segment out the primary object in a video 

sequence without any human intervention. It has a wide 

range of applications including video object recognition, 

action recognition and video summarization. Some 

examples are shown in Figure 1. The existing works on 

video object segmentation has been addressed by methods 

requiring a user to annotate the object position in some 

frames [7], and by fully automatic methods [8], which input 

just the video. 

Figure 1: Illustration of Primary Object Segmentation in 

Videos 

The top row is the original video frames with the 

expected segmentation results rendered as red contours. The 

bottom row is the same segmentation results after removing 

the background. The method belongs to the latter and does 

not assume the object is present in all the frames. Following 

the outstanding performance of Markov Random Field 

(MRF) based methods in image object segmentation [9], 

many of the existing video object segmentation approaches 

also build spatio-temporal MRF graphs and show promising 

results [10]. These approaches build a spatio-temporal 

graph by connecting spatially or temporally connected 

regions, e.g., pixels [11] or superpixels [12], and cast the 

segmentation problem into a node labeling problem in a 

MRF. This process is illustrated graphically in Figure 2. 

Such automatic primary video object segmentation methods 

usually have three major steps: initial visual or motion 

saliency estimation, spatio-temporal graph connection and 

foreground/ background appearance modeling. Automatic 

foreground/background appearance modeling is important 

as the saliency estimation is usually noisy especially along 

object boundaries due to cluttered background or 

background motions. However, it is challenging because 

there is no prior knowledge about foreground and 

background regions. Formally, with the presence of 

appearance constraints, there are two groups of parameters 

in the optimization process, i.e., segmentation labels x and 

appearance model. 
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For many commonly used appearance models such as 

Gaussian Mixture Models (GMM) [13] or Multiple Instance 

Learning [14], it is intractable to solve both parameters 

simultaneously. Hence, many existing methods adapt an 

iterative approach. They use the segmentation result of the 

previous iteration to train foreground and background 

appearance models which are then used to refine the 

segmentation in the next iteration. However, these methods 

can be easily trapped in local optimal and are time 

consuming especially for video data. The latter scenario is 

more practically relevant, as a good solution would enable 

processing large amounts of video without human 

intervention. However, this task is very challenging, as the 

method is given no knowledge about the object appearance, 

scale or position. Moreover, the general unconstrained 

setting might include rapidly moving backgrounds and 

objects, non-rigid deformations and articulations 

In the recent work some of the work follows a fully 

automatic methods discovers a set of key-segments to 

explicitly model likely foreground regions for video object 

segmentation. Idea is to leverage both static and dynamic 

cues to detect persistent object-like regions, and then 

estimate a complete segmentation of the video using those 

regions and a novel localization prior that uses their partial 

shape matches across the sequence. Most of the proposals 

do not correspond to an actual object. The goal of the 

proposed work is to generate an enhanced set of object 

proposals and extract the segments related to the primary 

object from the video. In this work propose a technique for 

fully automatic video object segmentation in unconstrained 

settings. Proposed method is computationally efficient and 

makes minimal assumptions about the video: the only 

requirement is for the object to move differently from its 

surrounding background in a good fraction of the video. 

The object can be static in a portion of the video and only 

part of it can be moving in some other portion (e.g. a cat 

starts running and then stops to lick its paws). This method 

does not require a static or slowly moving background (as 

opposed to classic background subtraction methods [25]). 

Moreover, it does not assume the object follows a particular 

motion model, or that all its points move homogeneously 

(as opposed to methods based on clustering point tracks 

[15]. This is especially important when segmenting non-

rigid or articulated objects such as animals. 

The key new element in this approach is a rapid 

technique to produce a rough estimate of which pixels are 

inside the object based on motion boundaries in pairs of 

subsequent frames. This initial estimate is then refined by 

integrating information over the whole video with a 

spatiotemporal extension of Min-Cut Max Flow (MCMF) 

based GraphCut. This second stage automatically bootstraps 

an effective appearance modeling technique in the MRF 

based segmentation framework for primary video object 

segmentation on the initial foreground estimate, and uses it 

to refine the spatial accuracy of the segmentation and to 

also segment the object in frames where it does not move. 

It embeds the appearance constraint directly into the graph 

by adding auxiliary nodes/connections, and the resultant 

graph-partition problem can be solved efficiently by one 

graph cut. Although inspired by the idea of [15] made the 

non-trivial extension from static images to videos, and 

generalizes the framework in more complicated cases. 

II. LITERATURE REVIEW

Finding “interesting” objects in image or video is a 

long-standing topic in vision, addressed in various forms 

including saliency detection, figure-ground segmentation, 

or object discovery. Whereas most saliency detectors rely 

on bottom-up image cues (e.g., [16]), recent work suggests 

that higher-level saliency may actually be learned from 

labeled data of segmented objects [17], drawing on classic 

Gestalt cues. In particular, interesting approaches to 

generate and rank an image’s multiple figure-ground 

segmentation hypotheses with results showing that higher 

ranked figure proposals are more likely to be objects in an 

image. Inspired by this premise, expand the notion of 

“object-like” regions to video, and introduce the requisite 

motion and persistence cues. Beyond single images, some 
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work considers discovering repeated patterns among pairs 

or groups of unlabeled images [18]. It is challenging since 

some unknown portion of any image may contain the 

repeated pattern, calling for iterative refinement techniques 

[18].  

Video offers stronger temporal consistency constraints 

than assorted snapshots, which this approach aims to 

leverage. In video with a stationary background, moving 

foreground regions pop-out well with classic background 

subtraction algorithms. However, for generic videos with 

unknown camera motion, lighting changes, and poor 

resolution or interesting but static objects they are 

inadequate. Repeated features in video are extracted in [19]; 

however, the local feature approach means the objects are 

often not delineated well from background, whereas seek 

fully segmented regions. More importantly, the grouping 

objective does not explicitly target discovery of a salient 

object. To this knowledge, no prior work considers 

unconstraint category-independent “object-like” foreground 

regions in video; this is considered as major part of this 

work 

There exist several datasets for video segmentation, but 

none of them has been specifically designed for video 

object segmentation, the task of pixel-accurate separation of 

foreground object(s) from the background regions. Despite 

being recently adopted by works focusing on video object 

segmentation [20], the dataset does not fulfill several 

important requirements. Most of the videos have low spatial 

resolution, segmentation is only provided on a sparse subset 

of the frames, and the content is not sufficiently diverse to 

provide a balanced distribution of challenging situations 

such as fast motion and occlusions. The Berkeley Video 

Segmentation Dataset (BVSD) [21] comprises a total 100, 

higher resolution sequences. It was originally meant to 

evaluate occlusions boundary detection and later extended 

to over- and motion-segmentation tasks (VSB100 [22]). 

However, several sequences do not contain a clear object. 

Furthermore, the ground-truth, available only for a subset of 

the frames, is fragmented, with most of the objects being 

covered by multiple manually annotated, disjoint segments, 

and therefore this dataset is not well suited for evaluating 

video object segmentation. 

Common low level video segmentation methods include 

superpixel segmentation [23] and supervoxel segmentation 

[24]. Superpixel segmentation methods typically over-

segment the entire frame into visually coherent groups or 

segments. Supervoxel segmentation is similar to superpixel 

segmentation but also groups pixels temporally and, hence, 

produces spatio-temporal segments.  Computer vision 

applications have come to rely increasingly on superpixels 

in recent years, but it is not always clear what constitutes a 

good superpixel algorithm. In an effort to understand the 

benefits and drawbacks of existing methods, we empirically 

compare five state-of-the-art superpixel algorithms for their 

ability to adhere to image boundaries, speed, memory 

efficiency, and their impact on segmentation performance. 

The  findings have led us to conclusive evidence that the 

hierarchical graph-based and segmentation by weighted 

aggregation methods perform best and almost equally-well 

on nearly all the metrics and are the methods of choice 

given this proposed assumptions.  

The method in [25] produces multiple proposal chains 

by linking local segments using long-range temporal 

constraints. It then obtains the final segmentation result by 

pixel-wise per-frame MRF smoothing using the appearance 

and location priors learned from these initial chains. The 

method in [49] first segments the selected key frames into 

an over complete set of segments using image segmentation 

algorithms and then employs the cohesive sub-graph mining 

technique to find the salient segments with similar 

appearance and strong mutual affinity.  

The method in [26] present a video co-segmentation 

method that uses category-independent object proposals as 

its basic element and can extract multiple foreground 

objects in a video set. The use of object elements 

overcomes limitations of low-level feature representations 

in separating complex foregrounds and backgrounds. They 
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formulate object-based co-segmentation as a co-selection 

graph in which regions with foreground-like characteristics 

are favored while also accounting for intra-video and inter-

video foreground coherence. To handle multiple foreground 

objects, expand the co-selection graph model into a 

proposed Multi-state Selection Graph (MSG) model that 

optimizes the segmentations of different objects jointly. 

This extension into the MSG have been applied not only to 

the co-selection graph, but also can be used to turn any 

standard graph model into a multi-state selection solution 

that can be optimized directly by the existing energy 

minimization techniques. The experiments show that our 

object-based multiple foreground video co-segmentation 

method (ObMiC) compares well to related techniques on 

both single and multiple foreground cases. The method in 

[26] does not have an explicit global appearance model, and 

to solve this work we adapts the iterative appearance 

modeling approach using multiple instance learning. 

III. PROPOSED METHODOLOGY

This work presents a MCMF-MRF technique for 

separating foreground objects from the background in a 

video. MCMF-MRF method is fast, fully automatic, and 

makes minimal assumptions about the video. This enables 

handling essentially unconstrained settings, including 

rapidly moving background, arbitrary object motion and 

appearance, and non-rigid deformations and articulations. 

Similar too many existing image and video object 

segmentation approaches, we cast the segmentation to a 

two-class node labeling problem in a MCMF-MRF. Within 

the MRF graph, each node is modeled as a super pixel, and 

will be labeled as either foreground or background in the 

segmentation process. It embeds the appearance constraint 

as auxiliary nodes and edges in the MCMF-MRF structure, 

and can optimize both the segmentation and appearance 

model parameters simultaneously in one MCMF. The goal 

of this work is to segment objects that move differently than 

their surroundings. The MCMF-MRF video segmentation 

method has two main stages: (1) efficient initial foreground 

estimation, (2) foreground-background labelling refinement. 

Now gives a brief overview of these two stages, and then 

presents them in more detail in the rest of the section.  

1. Efficient initial foreground estimation: The goal of

the first stage is to rapidly produce an initial

estimate of which pixels might be inside the object

based purely on motion. Then compute the optical

flow between pairs of subsequent frames and detect

motion boundaries. Ideally, the motion boundaries

will form a complete closed curve coinciding with

the object boundaries. However, due to inaccuracies

in the flow estimation, the motion boundaries are

typically incomplete and do not align perfectly with

object boundaries.

Also, occasionally false positive boundaries might

be detected. Propose a novel, computationally

efficient algorithm to robustly determine which

pixels reside inside the moving object, taking into

account all these sources of error

2. Foreground-background labeling refinement: As

they are purely based on motion boundaries, the

inside-outside maps produced by the first stage

typically only approximately indicate where the

object is. They do not accurately delineate object

outlines. Furthermore, (parts of) the object might be

static in some frames, or the inside-outside maps

may miss it due to incorrect optical flow estimation.

The goal of the second stage is to refine the spatial

accuracy of the inside-outside maps and to segment

the whole object in all frames. To achieve this, it

integrates the information from the inside-outside

maps over all frames by (1) encouraging the spatio-

temporal smoothness of the output segmentation

over the whole video; (2) building dynamic

appearance models of the object and background

under the assumption that they change smoothly

over time. Incorporating appearance cues is key to

achieving a finer level of detail, compared to using

only motion. Moreover, after learning the object
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appearance in the frames where the inside-outside 

maps found it, the second stage uses it to segment 

the object in frames where it was initially missed 

(e.g. because it is static). 

Figure 2: Overall Architecture Diagram 

A. Efficient Initial Foreground Estimation 

Optical flow begin by computing optical flow between 

pairs of subsequent frames (t; t + 1) using the state of-the-art 

algorithm [57]. It supports large displacements between 

frames and has a computationally very efficient GPU 

implementation [57].  Motion boundaries approach on motion 

boundaries, i.e. image points where the optical flow field 

changes abruptly. Motion boundaries reveal the location of 

occlusion boundaries, which very often correspond to physical 

object boundaries [58]. Let  fp���⃗   be the optical flow vector at 

pixel p. The simplest way to estimate motion boundaries is by 

computing the magnitude of the gradient of the optical flow 

field: 

bp
m = 1 − exp(−λm |�∇fp���⃗  � (1) 

Where bp
m ∈ [0,1] is the strength of the motion boundary 

at pixel p; λm  is a parameter controlling the steepness of the 

function. While this measure correctly detects boundaries at 

rapidly moving pixels, where bp
m   is close to 1, it is unreliable 

for pixels with intermediate bp
m  values around 0:5, which 
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could be explained either as boundaries or errors due to 

inaccuracies in the optical flow. To disambiguate between 

those two cases, compute a second estimator bp
θ ∈ [0,1], based 

on the difference in direction between the motion of pixel p 

and its neighbours N: 

bp
θ = 1 − exp �−λθ max

q∈N
(δθp,q

2 )� (2) 

where δθp,q
2  denotes the angle between fp���⃗    and fq���⃗   . The 

idea is that if n is moving in a different direction than all its 

neighbours, it is likely to be a motion boundary. This 

estimator can correctly detect boundaries even when the object 

is moving at a modest velocity, as long as it goes in a different 

direction than the background. However, it tends to produce 

false-positives in static image regions, as the direction of the 

optical flow is noisy at points with little or no motion . As the 

two measures above have complementary failure modes, 

combine them into a measure that is more reliable than either 

alone : 

bp = �
bp

m   , if bp
m > 𝑇𝑇

bp
m . bp

θ   , if bp
m ≤ T

� 
(3) 

where T is a high threshold, above which bp
m  is considered 

reliable on its own. As a last step threshold bpat 0:5 to 

produce a binary motion boundary labeling. 

Inside-outside maps: The produced motion boundaries 

typically do not completely cover the whole object boundary. 

Moreover, there might be false positive boundaries, due to 

inaccuracy of the optical flow estimation. Present here a 

computationally efficient algorithm to robustly estimate which 

pixels are inside the object while taking into account these 

sources of error. The algorithm estimates whether a pixel is 

inside the object based on the point-in-polygon from 

computational geometry. The key observation is that any ray 

starting from a point inside the polygon (or any closed curve) 

will intersect the boundary of the polygon an odd number of 

times. Instead, a ray starting from a point outside the polygon 

will intersect it an even number of times. Since the motion 

boundaries are typically incomplete, a single ray is not 

sufficient to determine whether a pixel lies inside the object. 

Instead, we get a robust estimate by shooting 8 rays spaced by 

45 degrees. Each ray casts a vote on whether the pixel is inside 

or outside. The final inside-outside decision is taken by 

majority rule, i.e. a pixel with 5 or more rays intersecting the 

boundaries an odd number of times are deemed inside. 

Propose an efficient algorithm which we call integral 

intersections, inspired by the use of integral images. The key 

idea is to create a special data structure that enables very fast 

inside-outside evaluation by massively reusing the 

computational effort that went into creating the datastructure. 

For each direction (horizontal, vertical and the two diagonals) 

we create a matrix S of the same size W ×H as the image. An 

entry S(x; y) of this matrix indicates the number of boundary 

intersections along the line going from the image border up to 

pixel (x; y). For simplicity, we explain here how to build S for 

the horizontal direction.  

The algorithm for the other directions is analogous. The 

algorithm builds S one line y at a time. The first pixel (1; y), at 

the left image border, has value S(1; y) = 0. Then move 

rightwards one pixel at a time and increment S(x; y) by 1 each 

time we transition from a non-boundary pixel to a boundary 

pixel. This results in a line S(:; y) whose entries count the 

number of boundary intersections . After computing S for all 

horizontal lines, the data structure is ready. Can now 

determine the number of intersections X for both horizontal 

rays (left→right, right→left) emanating from a pixel (x; y) in 

constant time by 

Xleft (x, y) = S(x − 1, y) (4) 

XRight (x, y) = S(W, y) − S(x, y) (5) 

Where W is the width of the image, i.e. the rightmost pixel 

in a line. This algorithm visits each pixel exactly once per 

direction while building S, and once to compute its vote, and 

is therefore linear in the number of pixels in the image. For 

each video frame t, apply the algorithm on all 8 directions and 

use majority voting to decide which pixels is inside, resulting 

is an inside-outside map Mt. 
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B. Foreground-background Labelling Refinement 

Formulate video segmentation as a pixel labeling problem 

with two labels (foreground and background). Over segment 

each frame into superpixels St which greatly reduces 

computational efficiency and memory usage, enabling to 

segment much longer videos. Each superpixel 𝑠𝑠𝑖𝑖𝑡𝑡 ∈ 𝑆𝑆𝑡𝑡  can take 

a label 𝑙𝑙𝑖𝑖𝑡𝑡 ∈ ℒ𝑡𝑡 . A labelling ℒ = {𝑙𝑙𝑖𝑖𝑡𝑡}𝑡𝑡 ,𝑖𝑖  of all superpixels in all 

frames represents a segmentation of the video. Similarly to 

other segmentation works define an energy function to 

evaluate a labeling. Markov Random Field (MRF) considered 

as a useful framework for characterizing the contextual 

information and widely used to image segmentation and 

restoration problems and etc. The statistical dependence 

between pixels is defined based on their neighbourhood 

system. In other words, pixels are considered to have a 

relationship with their neighbours using the concept of 

context. This brings the concept of smoothness prior model 

which allows producing smooth image classification pattern. 

MRF theory including its formulation described with set of 

random variables 𝑑𝑑 = {𝑑𝑑1,𝑑𝑑2 , . . . ,𝑑𝑑𝑚𝑚 } is defined on the set S 

containing in number of sites in which each random variable 

in)takes a label from  label  set L. The family d is called 

random field. The set S is equivalent to an image containing in 

pixels; d is a set of pixel DN values; and the label set L 

depends upon the application.  The label set L is equivalent to 

a set of the user-defined information classes. There are many 

kinds of random field models describing ways of labelling the 

random variables". MRF as one of a special type of random 

fields is described in the next paragraph. Based on the 

definition of random field, the configuration w for the set S as 

𝑤𝑤 = {𝑑𝑑1 = 𝑤𝑤1, …𝑑𝑑𝑚𝑚 = 𝑤𝑤𝑚𝑚 }). For convenience, the notation 

of w can be simplified to =   {𝑤𝑤1, 𝑤𝑤2, …𝑤𝑤𝑚𝑚 } . A random field 

with respect to the neighbourhood system is a MRF if its 

probability density function satisfies the following three 

properties; 

Positivity: P(w) > 0,  for  all possible configurations of w , 

it has non -zero probability and P(w) is the  probability of 

given dataset w.  

Markovianity: 𝑃𝑃(𝑤𝑤𝑟𝑟 |𝑤𝑤𝑠𝑠−𝑟𝑟) =  𝑃𝑃(𝑤𝑤𝑟𝑟 |𝑤𝑤𝑥𝑥𝑥𝑥 ),  this defines the 

neighbourhood system which can be interpreted as follow, 

membership value of pixel r is strongly dependent on it 

neighbouring pixels.  

Homogeneity:  𝑃𝑃(𝑤𝑤𝑟𝑟 |𝑤𝑤𝑁𝑁𝑁𝑁) is the same for all site r, for all 

pixels probability is dependent on neighbourhood pixels 

regardless of the pixel location. The neighbourhood system 

used in image analysis defines the first-order neighbours of a 

pixel as the four pixels sharing a side with the given pixel, as 

shown in Figure la. Second -order neighbours the four pixels 

having the corner boundaries with the pixel of interest. 

Similarly, higher- order neighbours can be extended same 

way. Energy minimization is used to solve the pixel labelling 

problem in different applications such as image restoration 

and segmentation etc. MAP solution can be obtained only by 

minimizing the global posterior energy. The posterior energy 

itself consists of prior and conditional energy function. In 

accordance to the Bayesian formulae, the MAP solution can 

be represented following: 

𝑝𝑝(𝑤𝑤|𝑑𝑑) =
𝑝𝑝(𝑑𝑑|𝑤𝑤)𝑝𝑝(𝑤𝑤)

𝑝𝑝(𝑑𝑑)
(6) 

P(d) where, w is the membership value and d is a given 

dataset. The posterior probability can be maximized as 

follows: 

𝑤𝑤 = arg max{𝑝𝑝(𝑤𝑤|𝑑𝑑)}  (7) 

Equation (6) shows that the MAP estimate is equivalent to 

the minimization of global energy function and can be 

expressed as: 

𝑤𝑤� = arg min{𝑈𝑈(𝑤𝑤|𝑑𝑑) + 𝑈𝑈(𝑤𝑤)}  (8) 

Where, 𝑤𝑤�  is the optimal class membership value after 

minimiAng the global energy function, 𝑈𝑈(𝑤𝑤|𝑑𝑑) is the 

conditional energy and U (w) prior energy function and the 

global posterior energy function can be defined as follow:  

𝑈𝑈(𝑥𝑥|𝑑𝑑) = 𝑈𝑈(𝑑𝑑|𝑤𝑤) + 𝑈𝑈(𝑤𝑤) (9) 
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An additional parameter of A, is added to equation (9) 

which controls the  balance between the  two energy functions 

and   value of A ranges between  0  and 1.  

Min - cut max - flow Algorithm 

Graph cuts algorithms have been studied in computer 

vision in the last years and they still remain an active research 

area in this field. Research has been done to develop and 

improve methods for energy minimization in vision. Graph 

theory together with a number of optimization methods are 

provided in this charter. The min-cut/max-flow algorithms 

from combinatorial optimization that can be used 

minimization number of energy functions in vision. These 

energies as well as some graph based methods can be 

represented as (10).  

𝐸𝐸(𝐿𝐿) = �𝐷𝐷𝑝𝑝�𝐿𝐿𝑝𝑝�
𝑝𝑝∈𝑃𝑃

+ � 𝑉𝑉𝑝𝑝 ,𝑞𝑞�𝐿𝐿𝑝𝑝 , 𝐿𝐿𝑞𝑞�
(𝑝𝑝 ,𝑞𝑞)∈𝑁𝑁

 (10) 

where 𝐿𝐿 ∈ �𝐿𝐿𝑝𝑝�𝑝𝑝 ∈ 𝑃𝑃� is called a labelling of image P, 

𝐷𝐷𝑝𝑝(. ) is a data penalty function, 𝑉𝑉𝑝𝑝 ,𝑞𝑞  is called an interaction 

potential, which encourage spatial coherence by penalizing 

discontinuities between neighbouring pixels, and N is a set of 

pairs of neighbours pixels .  Figure 3 shows example of image 

labelling problem. 

Figure 3: An Example of Image Labelling 

An image in Figure.3.(a) is a set of pixels P with observed 

intensities for each 𝑝𝑝 ∈  𝑃𝑃. In the case of Figure 3(b), 

L assigns label 𝐿𝐿𝑝𝑝 ∈  {0,1,2} to each pixel p P. Such labels can 

represent object index in segmentation. In case of graph based 

methods it is assumed that a set of feasible labels at each pixel 

is finite. Thick lines in Figure 4.(b) show labelling 

discontinuities between neighbouring pixels. However the 

minimum cost of the graph produce a globally optimal binary 

labelling L in the case of Potts model of interaction in (10). A 

directed weighted graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸),   which consist of a set 

of nodes V and a set of directed edges E connecting them .The 

nodes correspond to pixels in this case.  

The graph contains of additional special nodes that are 

called terminals. These terminals correspond to the set of 

labels that are assigned to pixels. They are source, s and sink t 

and they correspond to the set of labels that can be assigned to 

pixels. Figure 4 shows an example of a two terminal graph 

that can be used to minimal the Potts case of energy (10) on 

3x3 image with two labels. All edges in the graph are assigned 

some weight or cost. A cost of a directed edge(p,q)may differ 

from the cost of the reverse edge(q, p). There are two types of 

edges in the graph: n -links and t -links. N -links connect pairs 

of neighbouring pixels which represent a neighbourhood 

system in the image. Cost of n - links corresponds to a penalty 

for discontinuity between the pixels which are derived from 

the pixel interaction term 𝑉𝑉𝑝𝑝 ,𝑞𝑞  in energy (10) links connect 

pixels with terminals (labels). The cost of at t-link connecting 

pixel and a terminal corresponds to a penalty for assigning the 

corresponding label the pixel which is derived from the data 

term Dp in the energy (10). Figure 4 shows that t -links re 

shown in red and blue, but n -are in yellow 

Figure 4: Example a Capacitated Graph 
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computational time. The graph cuts algorithms such as swap -

move and expansion-move are based on min- cut algorithm. 

The  mathematical background of min  cut and max -flow 

provided below is described  in An s/t cutC  (can be called as 

cut) is a partitioning of   nodes in graph into two disjoint 

subset T such that the source s is in S and the sink t is in T. An 

example of is shown in figure 4(b). The cost of cut is C ={S, 

T} is the sum of cost of boundary edges (p,q)such that 𝑝𝑝 ∈ 𝑆𝑆 

and 𝑞𝑞 ∈ 𝑇𝑇. The cost is "directed" as it sums up weights of 

directed edges specifically from T . The minimum cut problem 

on a graph is to find the cut with minimum cost among all 

other cuts . One of the results in combinatorial optimization is 

that the minimum s/t cut problem can be solved by finding the 

maximum flow from source s to sink t. theorem of Ford states 

that a maximum flow from s to t saturates a set of edges in the 

graph dividing the nodes into two disjoint parts{S, T} 

corresponding to a minimum cut. Thus, min -cut and max- 

flow problems are equivalent. In fact, the maximum flow 

value is equal to the cost of minimum cut. 

Algorithm Steps 

Algorithm 1: Min-Cut Max Flow Optimization in Markov 

Random Field (MCMF-MRF) video segmentation  

Step 1: Efficient initial foreground estimation 

1.1. Optical flow begins by computing optical flow 

between pairs of subsequent frames (t; t + 1).  

1.2. Estimate motion boundaries is by computing the 

magnitude of the gradient in equation (1) 

1.3. Determine the number of intersections X for both 

horizontal rays (left→right, right→left)emanating from 

a pixel (x; y)  

Step 2: Foreground-background labelling refinement 

2.1. Formulate video segmentation as a pixel labeling 

problem with two labels  

2.2. A labelling ℒ = {𝑙𝑙𝑖𝑖𝑡𝑡}𝑡𝑡 ,𝑖𝑖  of all superpixels in all frames 

represents a segmentation of the video. 

2.3. Perform 4 MRF theory that satisfies three properties; 

2.3.1. Positivity: P(w) > 0,  for  all possible 

configurations of w , it has non -zero 

probability and P(w) is the  probability of 

given dataset w  

2.3.2. Markovianity: 𝑃𝑃(𝑤𝑤𝑟𝑟 |𝑤𝑤𝑠𝑠−𝑟𝑟) =  𝑃𝑃(𝑤𝑤𝑟𝑟 |𝑤𝑤𝑥𝑥𝑥𝑥 ), 

this defines the neighbourhood system with 

membership value of pixel r is strongly 

dependent on it neighbouring pixels.  

2.3.3. Homogeneity:  𝑃𝑃(𝑤𝑤𝑟𝑟 |𝑤𝑤𝑁𝑁𝑁𝑁) is the same for 

all site r, for all pixels probability is 

dependent on neighbourhood pixels 

regardless of the pixel location.  

2.3.4. Compute MAP solution by equation (6) 

2.3.5. The posterior probability can be maximized 

by equation (7) 

2.3.6. The global posterior energy function can be 

defined  by equation (9) 

2.3.7. Minimization number of energy functions in 

min-cut/max-flow by equation (10) 

Step 3: end 

IV. SIMULATION RESULTS

In order to evaluate the effectiveness of the proposed 

appearance modelling technique, run experiments on several 

benchmark datasets including the SegTrack v21 and 10-video-

clip dataset [13]. The videos in these two datasets are quite 

challenging. Many of the videos contain cluttered background 

and dynamic scenes due to camera motion or moving 

background objects. Some videos even contain fast motions 

such as the girl, person sequences in the SegTrack v2 dataset 

and the VWC102T, DO02_001 and DO01_055 sequences in 

ten video clip dataset. Some videos also contain cluttered 

background motions such as the swaying tree leaves and grass 

in the BR128T, BR130T and DO01_030 sequences in the ten 

video clip dataset. In some videos, the primary objects are 

visually very similar to the background, i.e., low contrast 

along object boundaries, such as the birdfall, frog and worm 

sequences in the SegTrack v2 dataset. Evaluate the proposed 
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approach against several state-of the- art methods including 

both MRF based method and non-MRF based methods. 

Figure 5: Input Video Frames 

Figure 6: Visual Saliency Map 

Figure 7: Motion Saliency Map 

Figure 8: Primary Video Object Segmentation Results 

Performance Evaluation 

The results are computed and the performance is evaluated 

based on the parameters like Peak Signal to Noise Ratio 

(PSNR), Mean Square Error (MSE), Normalized Correlation 

Coefficient (NC) and Structural Similarity index (SSIM). 

Moreover, it is proposed to use the objects spatial 

transformation parameters to automatically model and predict 

the evolution of intrinsic camera parameters and accordingly 

tune the detector for better performance. The results illustrates 

that the process is a proposed MCMF-MRF based video object 

segmentation technique and is highly detection against the 

different and also for different noisy environments. The 

mathematical equations for these performance parameters are 

as given in equation (11) to equation (15).  

Peak Signal to Noise Ratio (PSNR) 

The PSNR (τx) in dB is given as, 

𝜏𝜏𝑥𝑥 = 10 log10
𝑅𝑅2

𝜇𝜇𝑥𝑥
(11) 

Where, R is the maximum possible value in the 

corresponding data and 𝜇𝜇𝑥𝑥 is Mean Square Error (MSE).  

Mean Square Error (MSE) 

Mean Square Error (MSE) is defined as 

𝜇𝜇𝑥𝑥 =
1
𝑇𝑇
���𝐼𝐼𝑥𝑥(𝑖𝑖, 𝑗𝑗) − 𝐼𝐼𝑥𝑥′ (𝑖𝑖, 𝑗𝑗)�

2
𝑁𝑁

𝑗𝑗=1

𝑀𝑀

𝑖𝑖=1

(12) 
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Where 𝐼𝐼𝑥𝑥(𝑖𝑖, 𝑗𝑗)is the original data, 𝐼𝐼𝑥𝑥′ (𝑖𝑖, 𝑗𝑗)is the 

watermarked data, and M and N are data height and width 

such that T=M×N. In this work, for video, PSNR is calculated 

by taking average of PSNR values of all the tracking of 

corresponding frames of the video. The average PSNR is 

computed as, 

𝜏𝜏̅ =
1
𝐹𝐹
�𝜏𝜏𝑥𝑥

𝐹𝐹

𝑥𝑥=1

 
(13) 

Normalized Correlation Coefficient (NC) 

The third parameter is Normalized Correlation coefficient 

(NC) used as reference for finding the similarities between 

original and extracted video. Since the NC is correlation 

coefficient, the value of NC as ‘1’ indicates that the multi 

object extracted is highly correlated to that of the original one 

and the value of NC as ‘0’ indicates that the multi object 

extracted is highly uncorrelated to that of the original. For the 

general correlation, the NC value ranges between 0 and 1. It is 

obvious from the correlation coefficient that more the value of 

NC, then the extracted watermark is closer towards the 

original. For each watermark (corresponding to each frame of 

the video), the correlation coefficient (NC) is computed using 

correlation coefficient expression as specified in equation 

(14). 

𝑁𝑁𝐶𝐶𝑥𝑥 =
1
𝑇𝑇
��𝐼𝐼(𝑖𝑖, 𝑗𝑗) ⊕ 𝐼𝐼′(𝑖𝑖, 𝑗𝑗) ��������������������

𝑁𝑁

𝑗𝑗=1

𝑀𝑀

𝑖𝑖=1

 
(14) 

Where, T=M×N represents the total number of pixels of 

object extracted image for xth frame. x varies from 1 to F. 

Exclusive- NOR operation is performed to get the NC value. 

Structural Similarity Index (SSIM) 

Final parameter computed is SSIM. It is used to measure 

and evaluate the similarity between two data sets 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝐼𝐼, 𝐼𝐼′, 𝑥𝑥) =
�2𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦 + 𝑐𝑐1��2𝜎𝜎𝑥𝑥𝑥𝑥 + 𝑐𝑐2�

(𝜇𝜇𝑥𝑥2 + 𝜇𝜇𝑦𝑦2 + 𝑐𝑐1)(𝜎𝜎𝑥𝑥2 + 𝜎𝜎𝑦𝑦2 + 𝑐𝑐2)
(15) 

Where, I is the original input image and I’ is the object 

extracted video from xth video frame, μm is the mean of the 

intensities available in the original input image of xth frame, μn 

is the mean of the intensities available in the object extracted 

video from xth video frame. On the similar grounds, 𝜎𝜎𝑥𝑥2is 

variance of original input image I, 𝜎𝜎𝑦𝑦2is the variance of object 

extracted input image I’ and 𝜎𝜎𝑥𝑥𝑥𝑥  is covariance of original and 

object extracted image of xth frame. The graphs shown in 

Figure 9 to Figure 12, represents the Structural Similarity 

index (SSIM), Normalized Correlation Coefficient (NCC), 

Peak Signal to Noise Ratio (PSNR) and  Mean Square Error 

(MSE) of the video and object extracted video under the 

condition is applied on the video. The graphs shown in  all 

methods represents that the proposed schema performs better 

for all parameters is applied on the video. 

Figure 9: SSIM Comparison of Videos 

The table 1 to table 4, represents the Structural Similarity 

index (SSIM), Normalized Correlation Coefficient (NCC), 

Peak Signal to Noise Ratio (PSNR) and Mean Square Error 

(MSE) of the video and object tracked video under the 

condition is applied on the video. The graphs shown in all 

methods represents that the proposed MCMF-MRF schema 

performs better for all parameters is applied on the video. 

Table 1: SSIM Comparison of Videos 

S.No Videos SSIM 
MRF NMRF MCMF-MRF 

1 Person 0.860 0.889 0.912 
2 Vehicle 0.8712 0.8902 0. 9272 
3 Monkeydog 0.8817 0.9018 0.9351 
4 Playing 0.8982 0.9128 0.9478 
5 grass 0.9228 0.9382 0.9593 
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Figure 10: NCC Comparison of Videos 

Table 2: NCC Comparison of Videos 

S.No Videos NCC 
MRF NMRF MCMF-MRF 

1 Person 0.8230 0.8514 0.8936 
2 Vehicle 0.8318 0.8621 0.9016 
3 Monkeydog 0.8425 0.8718 0.9236 
4 Playing 0.8663 0.8815 0.9352 
5 grass 0.8878 0.9012 0.9436 

Figure 11: PSNR Comparison of Videos 

Table 3: PSNR Comparison of Videos 

S.No Videos PSNR(dB) 
MRF NMRF MCMF-MRF 

1 Person 36.25 38.98  40.23  
2 Vehicle 37.18  39.86  41.63 
3 Monkeydog 38.26  40.29  42.39 
4 Playing 39.81  42.58  44.28 
5 grass 40.25 43.93 45.37 

Figure 12: MSE Comparison of Videos 

Table 4: MSE Comparison of Videos 

S.No Videos MSE 
MRF NMRF MCMF-MRF 

1 Person 0.38  0.29  0.26  
2 Vehicle 0.41  0.33  0.28  
3 Monkeydog 0.43  0.38  0.32  
4 Playing 0.4500  0.4012  0.3563  
5 grass 0.4820 0.4186 0.3782 

V. CONCLUSION AND FUTURE WORK

In this work propose an efficient and effective appearance 

modeling technique in the MCMF-MRF framework for 

automatic primary video object segmentation.  The goal of this 

work is to segment objects that move differently than their 

surroundings. The MCMF-MRF video segmentation method 

has two main stages: (1)efficient initial foreground estimation, 

(2) foreground-background labelling refinement.  Efficient 

initial foreground estimation goal of the first stage is to rapidly 

produce an initial estimate of which pixels might be inside the 

object based purely on motion. Then compute the optical flow 

between pairs of subsequent frames and detect motion 

boundaries. Ideally, the motion boundaries will form a 

complete closed curve coinciding with the object boundaries. 

Foreground-background labeling refinement they are purely 

based on motion boundaries, the inside-outside  maps 

produced by the first stage typically only approximately 

indicate where the object is. They do not accurately delineate 

object outlines. Furthermore, (parts of) the object might be 

person vehicle  monkeydog  playingvideo grass
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of videos

N
C

C

 

MRF
NMRF
MCMF-MRF

person vehicle  monkeydog  playingvideo grass
10

15

20

25

30

35

40

45

50

Number of videos

P
S

N
R

(d
B

)

 

MRF
NMRF
MCMF-MRF

person vehicle  monkeydog  playingvideo grass
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of videos

M
S

E

 

MRF
NMRF
MCMF-MRF

Journal on Science Engineering & Technology 
Vo1ume 3, No. 03, September 2016 122

ISSN: 2349-6657 @ JSET



static in some frames, or the inside-outside maps may miss it 

due to incorrect optical flow estimation.  The proposed 

method uses histogram features to characterize the local 

regions and embed the global appearance constraint into the 

graph by auxiliary nodes and connections. Compared with 

many existing appearance models, the optimization process of 

proposed method is non-iterative. Experimental evaluations 

show that proposed method is faster than many of the 

alternatives and the segmentation accuracy is also better than 

or comparable with the state-of-the-art methods. Currently, 

running time efficiency and memory requirements are a major 

bottleneck for the usability of several video segmentation 

algorithms. In these experiments observed that a substantial 

amount of time is spent preprocessing images to extract 

boundary preserving regions, saliency based feature extraction 

and motion estimates. Encourage future research to carefully 

select those components bearing in mind they could 

compromise the practical utility of their work. Efficient 

algorithms will be able to take advantage of the Full videos 

and accurate segmentation masks made available with this 

dataset. Leveraging high resolution might not produce better 

results in terms of region-similarity, but it is essential to 

improve the segmentation of complex object contours and tiny 

object region. 
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