
Abstract--- Approximate computing appear as a 

promising solution to reduce their power dissipation. Such 

applications process large redundant data sets or noisy input 

data derived from the real world, do not have a golden 

result, perform statistical/probabilistic computations, and/or 

demand human interaction, thus their exactness is relaxed 

due to limited human perception. Approximate computing 

can be applied at both software and hardware levels. 

Hardware-level approximation mainly targets arithmetic 

units, such as adders and multipliers, widely used in 

portable devices to implement multimedia algorithms, e.g., 

image and video processing. Partial product generation, we 

introduce the partial product preforation method for 

creating approximate multipliers. Inspired from, we omit 

the generation of some partial products, thus reducing the 

number of partial products that have to be accumulated, we 

decrease the area, power, and depth of the accumulation 

tree.  

Keywords--- Approximate Arithmetic Circuits, 

Approximate Computing, Approximate Multiplier, Error 

Analysis, Low Power. 

I. INTRODUCTION 
Approximate computing has emerged as a potential 

solution for the design of energy-efficient digital systems. 

Uses such as multimedia, identification and data mining are 

inherently error-tolerant and do not require a perfect 

accuracy in calculation. For these uses, approximate circuits 

may play an important role as a promising alternative for 

decreasing area, power and delay in digital systems that can 
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tolerate some loss of accuracy, thereby achieving better 

performance in energy efficiency. As one of the key 

components in arithmetic circuits, adders have been 

extensively studied for approximate implementation New 

methodologies to model, analyze and evaluate the 

approximate adders have been discussed. However, there 

has been relatively less effort in the architecture of 

approximate multipliers. A multiplier usually consists of 3 

stages: partial product execution, partial product 

accumulation and a carry propagation adder (CPA) at the 

final stage. Considers using approximate adders to generate 

the radix-8 Booth encoding 3x with error reduction. In 

approximate partial products are computed using inaccurate 

2 × 2 multiplier blocks, while exact adders are used in an 

adder tree to accumulate the approximate partial products. 

Briefly discusses the use of approximate speculative adders 

for the final stage addition in a multiplier. The error tolerant 

multiplier (ETM) of is based on the truncation of a 

multiplier into an accurate multiplication part for MSBs and 

a non-amplification part for LSBs. In this paper, a novel 

approximate multiplier design is proposed using a simple, 

yet fast approximate adder. This newly architecture adder 

can process data in parallel by cutting the carry breeding 

chain (and thus, introducing an error). It has a critical path 

delay that is even shorter than a conventional one-bit full 

adder. Albeit concurring a high error rate, this adder 

simultaneously computes the sum and generates an error 

signal; this feature is worked to reduce the error in the final 

result of the multiplier. In the proposed approximate 

multiplier, a simple tree of the relative adders is used for 

partial product accumulation and the error signals are used 

to refund the error for obtaining a better accuracy. 

Compared to the traditional (exact) Wallace and Dadda 
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trees, the proposed multiplier has a significantly shorter 

critical path as well as a reduced circuit complexity. 

II. INTRODUCTION ABOUT MULTIPLIERS

Multipliers play an important role in today’s digital 

signal processing and various other applications. With 

advances in technology, many developers have tried and are 

trying to design multipliers which offer either of the 

following architecture targets – high speed, low power 

consumption, regularity of layout and hence less area or 

even aggregate of them in one multiplier thus making them 

suitable for various high speed, low power and compact 

VLSI implementation.  

The common compounding method is “add and shift” 

algorithm. In parallel multipliers number of partial products 

to be additive is the main parameter that determines the 

performance of the multiplier. To reduce the number of 

partial products to be additional, Modified Booth algorithm 

is one of the most popular algorithms. To obtain speed 

improvements Wallace Tree algorithm can be application 

wise is to reduce the number of sequential adding stages. 

Further by aggregating both Modified Booth algorithm and 

Wallace Tree technique we can see advantage of both 

algorithms in one multiplier. However with improved 

parallelism, the amount of shifts between the partial 

products and intermediate sums to be addition will increase 

which may result in decreased speed, increase in silicon 

area due to irregularity of structure and also increased 

power decayed due to increase in interconnect resulting 

from complex routing. On the other hand “serial-parallel” 

multipliers compromise speed to obtain better performance 

for area and power consumption. The selection of a parallel 

or serial multiplier actually builds on the nature of 

application. In this lecture we introduce the multiplication 

algorithms and architecture and analyze them in terms of 

speed, area, power and combination of these metrics. 

III. ARRAY MULTIPLIER

The configuration of an array multiplier is shown in 

Figure. There is a one-to-one topological correspondence 

between this hardware structures. The execution of N 

partial products requires N x M two-bit AND gates most of 

the places of the multiplier is ardent to the adding of the N 

partial products, which requires N-1 M-bit adders. The 

shifting of the partial products for their proper adjustment is 

performed by simple routing and does not require any logic. 

The overall structure can easily be compress into a 

rectangle, resulting in a very efficient layout.  

Due to the array organization, determining the 

propagation stoppage of this circuit is not straightforward. 

Consider the implementation of the limited sum adders are 

implemented as ripple-carry structures. Operation 

optimization requires that the critical timing way is to be 

identified first. This turns out to be nontrivial. In fact, a 

huge number of paths of almost identical length can be 

identified. A closer look at those critical ways yields an 

approximate expression for the propagation delay. 

Where tcarry is the propagation stoppage between input 

and output carry, tsum is the delay between the input carry 

and sum bit of the full adder, and tand is the stoppage of the 

AND gate. Since all critical paths have the same length, 

speeding up just one of them-for instance, by restoration 

one adder by a faster one such as a carry-select adder-doe 

not make much feel from a design standpoint. AH critical 

ways have to be attacked at the same time. From the above 

equation, it can be deduct that the minimization of tmult 

wanted the minimization of both tcarry. 

IV. DADDA MULTIPLIER

The Dadda multiplier is a hardware multiplier 

architecture invented by computer scientist Luigi Dadda in 

1965. It is similar to the Wallace multiplier, but it is slightly 

higher (for all operand sizes) and requires fewer gates (for 
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all but the smallest operand sizes). In fact, Dadda and 

Wallace multipliers have the same 3 procedures consists: 

1. Multiply (logical AND) each bit of one of the

altercation, by each bit of the other, yielding

results. Depending on position of the multiplied

bits, the wires ferry different weights, for example

wire of bit result of  is 32. 

2. Reduce the number of partial multiplications to two

layers of full and half adders.

3. Merge the wires in 2 numbers, and add them with a

conventional adder.

However, dissimilar Wallace multipliers that reducts as 

much as possible on each layer, Dadda multipliers do as 

few contractions as possible. Because of this, Dadda 

amplifiers have a less expensive reduction phase, but the 

numbers may be a few bits longer, thus wanted slightly 

bigger adders. To achieve this, the structure of the second 

step is governed by slightly more complicated rules than in 

the Wallace tree. As in the Wallace tree, a new layer is 

added if any weight is carried by three or more wires. The 

reducing rules for the Dadda tree, however, are as follows: 

• Take any three wires with the similar weights and

input them into a full adder. The reaction will be an

output wire of the same weight and an output wire

with a larger weight for each three input wires.

• If there are two wires of the same weight left, and

the modern number of output wires with that weight

is balanced to 2 (modulo 3), input them into a half

adder. Otherwise, pass them through to the next

layer.

• If there is just one wire larboard, connect it to the

next layer.

1. DADDA Tree

Example of DADDA Reduction on 8X8 Multiplier 

V. DESIGN OF WALLACE TREE ADDERS

There are many cases where it is desired to add more 

than two numbers together. The direct way of adding 

together m numbers (all n bits wide) is to add the first two, 

then add that sum to the next, and so on. This wanted s a 

total of m-1 additions, for a total gate delay of O(m lg n) 

(over bearing  look ahead carry adders). Instead, a tree of 

adders can be formed, taking only O(lg m·lg n) gate delays. 

 A Wallace tree adder auditioned together n bits to 

produce a sum of log2n bits. The design of a Wallace tree 

adder to add seven bits (W7) is adorned below: 

Wallace multiplier is an efficient parallel multiplier. In 

the current Wallace tree multiplier, the first step is to form 

unfinished product array (of N2 bits). In the second step, 

groups of three nearest rows each, is collected. An adder 

tree to add three 4-bit numbers is shown below: 
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Each group of three rows is redacted by using full 

adders and half adders. Full adders are used in each column 

where there are three bits whereas half adders are 

application wise in each column where there are two bits. 

Any single bit in a column is passed to the next level in the 

same column without processing. This reduction procedure 

is repeated in each successive stage until only two rows 

balance. In the final step, the balance two rows are added 

using a carry propagating adder. 

A. Reduced Complexity Wallace Multiplier Reduction 

Technique 

Waters et al. presented reduced complexity Wallace 

multiplier reduction approach. It is a modification to the 

second phase reduction method used in the conventional 

Wallace multipliers, in which number of the half adders is 

greatly reduction. In the first phase, the partial product array 

is formed and it is transferred in the form of an inverted 

pyramid array. An inverted pyramid array is formed when 

the bits in the left half of the partial multiplication array is 

shifted in the upward direction. This array is divided into 

group of three rows every full adders are used in each 

column. Half adders are used only when the number of 

reduction stages of the modified Wallace multiplier is 

overflowed that of the conventional Wallace multiplier. 

Both multipliers yield same measurements in the terms 

of delay and have same number of the reduction stages, but 

the modified Wallace multiplier has the advantage of 

reduction complexity as number of half adders is 80% less 

than the conventional Wallace multiplier in the second 

phase. However due to reducing in number of half adders, 

the total gate count in modified Wallace reducing is always 

less than that of the ordinary Wallace reduction. The 

number of full adders is somewhat increased between 1-5 

for 8-64 bit modified Wallace multiplier. 

The Wallace Tree has Three Steps 

• Multiply (that is-AND) each bit of one of the

arguments, by every bit of the other, passive results.

Depending on position of the multiplied bits, the 

wires carry different weights.   

• Reductioning the number of partial products to two

by layers of full and half adders.

• Group the wires in two numbers, and add them with

a ordinary adder.

As long as there are three or more wires with the same 

weight add following flows:  

• Take any 3 wires with the same weights¬ and input

them into a full adder. The conclude will be an

output wire of the same weight and an output wire

with a higher weight for each three input wires.

• If there are 2 wires of the similar weight¬ left,

input them into a half adder.

• If there is just one wire left, connect it to¬ the next

layer.

VI. PROPOSED APPROACHES-SQUARE-ROOT
CARRY SELECT ADDER

The square-root carry select adder is build up by 

equalizing the delay through two carry chains and the block 

multiplexer signal from previous stage. It is also termed as 

non-linear carry select adder. The previous changes made 

SQRT CSLA uses Binary to Excess-1 Converter (BEC) 

instead of RCA with Cin=1 in the regular CSLA to obtain 

lower delay with slightly increase in area. The basic idea of 

the proposed architecture is that which replaces the BEC 

logic by same Boolean Logic. The proposed architecture 
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generates a duplicate sum and carry-out signal by using 

NOT and OR gate and exclusive value with the help of 

multiplexer. The multiplexer is used to select the correct 

output coordinating to its previously carry-out signal. 

The modified 16-bit SQRT CSLA using BEC is shown 

in Fig. 4. The architecture is again divided into five groups 

with different sizes of Ripple carry adder and BEC. The 

groupie, group III, group IV and group V of 16-bit SQRT 

CSLA are shown. The parallel Ripple carry adder with 

Cin=1 is recovered with BEC. One input to the multiplexer 

goes from the RCA with Cin=0 and other input from BEC. 

Comparing the individual groups of both daily and changed 

SQRT CSLA, it is clear that the BEC structure reduces 

delay. 

In proposed architecture, an area-able to carry select 

adder by sharing the common Boolean logic term to remove 

the duplicated adder cells in the ordinary carry select adder 

is shown in this way, it saves many transistor counts and 

obtains a low power. Through searching the truth table of a 

single bit full adder, to find out the output of summation 

signal as carry-in signal is logic ‘0’ is the converse signal of 

itself as carry-in signal is logic ‘1’. By sharing the common 

Boolean logic term in addition generation, a proposed carry 

select adder design is illustrated in figure. 

VII. CONCLUSION

Power, delay and area are the combining factors in 

VLSI design that limits the performance of any circuit. This 

work presents a simple technique to reduce the area, delay 

and power of a multiplier using CSLA architecture. Several 

popular and well-known schemes, with the objective of 

improving the speed of the parallel multiplier, have been 

developed in past. This proposed modified Wallace and 

Dadda multipliers are introduced a very important iterative 

realization of parallel multiplier. This advantage becomes 

more pronounced for multipliers of bigger than 16 bits. In 

this way, the transistor calculation of proposed. Therefore 

Wallace and Dadda multipliers are reduced having less area 

and low power which makes it simple and capable for VLSI 

hardware implementations. 

VIII. SIMULATION RESULTS AND ITS
DESCRIPTION

This work has been developed using Xilinx tool it 

shows the comparison between the various adders like 

ordinary CSLA, Modified CSLA, regular SQRT CSLA, 

Modified SQRT CSLA and exposed SQRT CSLA for 8-

bit,16-bit, 32-bit and 64-bit. The parameters on which they 

are correlated are area, delay and power. Fig. 10 depicts that 

the proposed SQRT CSLA has less number of gates and 

since its a less area. Fig. shows the adder circuit for delay 

comparison. The results compared in Fig. 12 s hows that the 

power consumption of proposed SQRT CSLA is reduced. It 

is clear that power, area and delay of proposed SQRT 

CSLA for 8-bit, 16-bit, 32-bit and 64-bit is reduced as 

compared to other adders. 
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DADDA Multiplier Modified Accurate and Approximate 

Results 

Accurate Results 
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