
Abstract--- Approximate computing appear as a

promising solution to reduce their power dissipation. Such

applications process large redundant data sets or noisy input

data derived from the real world, do not have a golden

result, perform statistical/probabilistic computations, and/or

demand human interaction, thus their exactness is relaxed

due to limited human perception. Approximate computing

can be applied at both software and hardware levels.

Hardware-level approximation mainly targets arithmetic

units, such as adders and multipliers, widely used in

portable devices to implement multimedia algorithms, e.g.,

image and video processing. Partial product generation, we

introduce the partial product preforation method for

creating approximate multipliers. Inspired from, we omit

the generation of some partial products, thus reducing the

number of partial products that have to be accumulated, we

decrease the area, power, and depth of the accumulation

tree.

Keywords--- Approximate Arithmetic Circuits,

Approximate Computing, Approximate Multiplier, Error

Analysis, Low Power.

I. INTRODUCTION
Approximate computing has emerged as a potential

solution for the design of energy-efficient digital systems.

Uses such as multimedia, identification and data mining are

inherently error-tolerant and do not require a perfect

accuracy in calculation. For these uses, approximate circuits

may play an important role as a promising alternative for

decreasing area, power and delay in digital systems that can

V.P. Sasikala, ME, Department of VLSI, Maharaja Institute of
Technology, Coimbatore. E-mail:sasikalasivan06@gmail.com

R. Dharmalingam, ME, HOD, Department of VLSI, Maharaja Institute
of Technology, Coimbatore.

tolerate some loss of accuracy, thereby achieving better

performance in energy efficiency. As one of the key

components in arithmetic circuits, adders have been

extensively studied for approximate implementation New

methodologies to model, analyze and evaluate the

approximate adders have been discussed. However, there

has been relatively less effort in the architecture of

approximate multipliers. A multiplier usually consists of 3

stages: partial product execution, partial product

accumulation and a carry propagation adder (CPA) at the

final stage. Considers using approximate adders to generate

the radix-8 Booth encoding 3x with error reduction. In

approximate partial products are computed using inaccurate

2 × 2 multiplier blocks, while exact adders are used in an

adder tree to accumulate the approximate partial products.

Briefly discusses the use of approximate speculative adders

for the final stage addition in a multiplier. The error tolerant

multiplier (ETM) of is based on the truncation of a

multiplier into an accurate multiplication part for MSBs and

a non-amplification part for LSBs. In this paper, a novel

approximate multiplier design is proposed using a simple,

yet fast approximate adder. This newly architecture adder

can process data in parallel by cutting the carry breeding

chain (and thus, introducing an error). It has a critical path

delay that is even shorter than a conventional one-bit full

adder. Albeit concurring a high error rate, this adder

simultaneously computes the sum and generates an error

signal; this feature is worked to reduce the error in the final

result of the multiplier. In the proposed approximate

multiplier, a simple tree of the relative adders is used for

partial product accumulation and the error signals are used

to refund the error for obtaining a better accuracy.

Compared to the traditional (exact) Wallace and Dadda

An Optimized Design of Approximate Multiplier
by Partial Product Preforation

V.P. Sasikala and R. Dharmalingam

Journal on Science Engineering & Technology
Vo1ume 3, No. 03, September 2016 150

ISSN: 2349-6657 @ JSET

trees, the proposed multiplier has a significantly shorter

critical path as well as a reduced circuit complexity.

II. INTRODUCTION ABOUT MULTIPLIERS

Multipliers play an important role in today’s digital

signal processing and various other applications. With

advances in technology, many developers have tried and are

trying to design multipliers which offer either of the

following architecture targets – high speed, low power

consumption, regularity of layout and hence less area or

even aggregate of them in one multiplier thus making them

suitable for various high speed, low power and compact

VLSI implementation.

The common compounding method is “add and shift”

algorithm. In parallel multipliers number of partial products

to be additive is the main parameter that determines the

performance of the multiplier. To reduce the number of

partial products to be additional, Modified Booth algorithm

is one of the most popular algorithms. To obtain speed

improvements Wallace Tree algorithm can be application

wise is to reduce the number of sequential adding stages.

Further by aggregating both Modified Booth algorithm and

Wallace Tree technique we can see advantage of both

algorithms in one multiplier. However with improved

parallelism, the amount of shifts between the partial

products and intermediate sums to be addition will increase

which may result in decreased speed, increase in silicon

area due to irregularity of structure and also increased

power decayed due to increase in interconnect resulting

from complex routing. On the other hand “serial-parallel”

multipliers compromise speed to obtain better performance

for area and power consumption. The selection of a parallel

or serial multiplier actually builds on the nature of

application. In this lecture we introduce the multiplication

algorithms and architecture and analyze them in terms of

speed, area, power and combination of these metrics.

III. ARRAY MULTIPLIER

The configuration of an array multiplier is shown in

Figure. There is a one-to-one topological correspondence

between this hardware structures. The execution of N

partial products requires N x M two-bit AND gates most of

the places of the multiplier is ardent to the adding of the N

partial products, which requires N-1 M-bit adders. The

shifting of the partial products for their proper adjustment is

performed by simple routing and does not require any logic.

The overall structure can easily be compress into a

rectangle, resulting in a very efficient layout.

Due to the array organization, determining the

propagation stoppage of this circuit is not straightforward.

Consider the implementation of the limited sum adders are

implemented as ripple-carry structures. Operation

optimization requires that the critical timing way is to be

identified first. This turns out to be nontrivial. In fact, a

huge number of paths of almost identical length can be

identified. A closer look at those critical ways yields an

approximate expression for the propagation delay.

Where tcarry is the propagation stoppage between input

and output carry, tsum is the delay between the input carry

and sum bit of the full adder, and tand is the stoppage of the

AND gate. Since all critical paths have the same length,

speeding up just one of them-for instance, by restoration

one adder by a faster one such as a carry-select adder-doe

not make much feel from a design standpoint. AH critical

ways have to be attacked at the same time. From the above

equation, it can be deduct that the minimization of tmult

wanted the minimization of both tcarry.

IV. DADDA MULTIPLIER

The Dadda multiplier is a hardware multiplier

architecture invented by computer scientist Luigi Dadda in

1965. It is similar to the Wallace multiplier, but it is slightly

higher (for all operand sizes) and requires fewer gates (for

Journal on Science Engineering & Technology
Vo1ume 3, No. 03, September 2016 151

ISSN: 2349-6657 @ JSET

http://en.wikipedia.org/wiki/Luigi_Dadda
http://en.wikipedia.org/wiki/Wallace_multiplier

all but the smallest operand sizes). In fact, Dadda and

Wallace multipliers have the same 3 procedures consists:

1. Multiply (logical AND) each bit of one of the

altercation, by each bit of the other, yielding

results. Depending on position of the multiplied

bits, the wires ferry different weights, for example

wire of bit result of is 32.

2. Reduce the number of partial multiplications to two

layers of full and half adders.

3. Merge the wires in 2 numbers, and add them with a

conventional adder.

However, dissimilar Wallace multipliers that reducts as

much as possible on each layer, Dadda multipliers do as

few contractions as possible. Because of this, Dadda

amplifiers have a less expensive reduction phase, but the

numbers may be a few bits longer, thus wanted slightly

bigger adders. To achieve this, the structure of the second

step is governed by slightly more complicated rules than in

the Wallace tree. As in the Wallace tree, a new layer is

added if any weight is carried by three or more wires. The

reducing rules for the Dadda tree, however, are as follows:

• Take any three wires with the similar weights and

input them into a full adder. The reaction will be an

output wire of the same weight and an output wire

with a larger weight for each three input wires.

• If there are two wires of the same weight left, and

the modern number of output wires with that weight

is balanced to 2 (modulo 3), input them into a half

adder. Otherwise, pass them through to the next

layer.

• If there is just one wire larboard, connect it to the

next layer.

1. DADDA Tree

Example of DADDA Reduction on 8X8 Multiplier

V. DESIGN OF WALLACE TREE ADDERS

There are many cases where it is desired to add more

than two numbers together. The direct way of adding

together m numbers (all n bits wide) is to add the first two,

then add that sum to the next, and so on. This wanted s a

total of m-1 additions, for a total gate delay of O(m lg n)

(over bearing look ahead carry adders). Instead, a tree of

adders can be formed, taking only O(lg m·lg n) gate delays.

 A Wallace tree adder auditioned together n bits to

produce a sum of log2n bits. The design of a Wallace tree

adder to add seven bits (W7) is adorned below:

Wallace multiplier is an efficient parallel multiplier. In

the current Wallace tree multiplier, the first step is to form

unfinished product array (of N2 bits). In the second step,

groups of three nearest rows each, is collected. An adder

tree to add three 4-bit numbers is shown below:

Journal on Science Engineering & Technology
Vo1ume 3, No. 03, September 2016 152

ISSN: 2349-6657 @ JSET

http://en.wikipedia.org/wiki/Logical_conjunction
http://en.wikipedia.org/wiki/Adder_%28electronics%29
http://en.wikipedia.org/wiki/Full_adder
http://en.wikipedia.org/wiki/Half_adder
http://en.wikipedia.org/wiki/Half_adder
http://en.wikipedia.org/wiki/Half_adder

Each group of three rows is redacted by using full

adders and half adders. Full adders are used in each column

where there are three bits whereas half adders are

application wise in each column where there are two bits.

Any single bit in a column is passed to the next level in the

same column without processing. This reduction procedure

is repeated in each successive stage until only two rows

balance. In the final step, the balance two rows are added

using a carry propagating adder.

A. Reduced Complexity Wallace Multiplier Reduction

Technique

Waters et al. presented reduced complexity Wallace

multiplier reduction approach. It is a modification to the

second phase reduction method used in the conventional

Wallace multipliers, in which number of the half adders is

greatly reduction. In the first phase, the partial product array

is formed and it is transferred in the form of an inverted

pyramid array. An inverted pyramid array is formed when

the bits in the left half of the partial multiplication array is

shifted in the upward direction. This array is divided into

group of three rows every full adders are used in each

column. Half adders are used only when the number of

reduction stages of the modified Wallace multiplier is

overflowed that of the conventional Wallace multiplier.

Both multipliers yield same measurements in the terms

of delay and have same number of the reduction stages, but

the modified Wallace multiplier has the advantage of

reduction complexity as number of half adders is 80% less

than the conventional Wallace multiplier in the second

phase. However due to reducing in number of half adders,

the total gate count in modified Wallace reducing is always

less than that of the ordinary Wallace reduction. The

number of full adders is somewhat increased between 1-5

for 8-64 bit modified Wallace multiplier.

The Wallace Tree has Three Steps

• Multiply (that is-AND) each bit of one of the

arguments, by every bit of the other, passive results.

Depending on position of the multiplied bits, the

wires carry different weights.

• Reductioning the number of partial products to two

by layers of full and half adders.

• Group the wires in two numbers, and add them with

a ordinary adder.

As long as there are three or more wires with the same

weight add following flows:

• Take any 3 wires with the same weights¬ and input

them into a full adder. The conclude will be an

output wire of the same weight and an output wire

with a higher weight for each three input wires.

• If there are 2 wires of the similar weight¬ left,

input them into a half adder.

• If there is just one wire left, connect it to¬ the next

layer.

VI. PROPOSED APPROACHES-SQUARE-ROOT
CARRY SELECT ADDER

The square-root carry select adder is build up by

equalizing the delay through two carry chains and the block

multiplexer signal from previous stage. It is also termed as

non-linear carry select adder. The previous changes made

SQRT CSLA uses Binary to Excess-1 Converter (BEC)

instead of RCA with Cin=1 in the regular CSLA to obtain

lower delay with slightly increase in area. The basic idea of

the proposed architecture is that which replaces the BEC

logic by same Boolean Logic. The proposed architecture

Journal on Science Engineering & Technology
Vo1ume 3, No. 03, September 2016 153

ISSN: 2349-6657 @ JSET

generates a duplicate sum and carry-out signal by using

NOT and OR gate and exclusive value with the help of

multiplexer. The multiplexer is used to select the correct

output coordinating to its previously carry-out signal.

The modified 16-bit SQRT CSLA using BEC is shown

in Fig. 4. The architecture is again divided into five groups

with different sizes of Ripple carry adder and BEC. The

groupie, group III, group IV and group V of 16-bit SQRT

CSLA are shown. The parallel Ripple carry adder with

Cin=1 is recovered with BEC. One input to the multiplexer

goes from the RCA with Cin=0 and other input from BEC.

Comparing the individual groups of both daily and changed

SQRT CSLA, it is clear that the BEC structure reduces

delay.

In proposed architecture, an area-able to carry select

adder by sharing the common Boolean logic term to remove

the duplicated adder cells in the ordinary carry select adder

is shown in this way, it saves many transistor counts and

obtains a low power. Through searching the truth table of a

single bit full adder, to find out the output of summation

signal as carry-in signal is logic ‘0’ is the converse signal of

itself as carry-in signal is logic ‘1’. By sharing the common

Boolean logic term in addition generation, a proposed carry

select adder design is illustrated in figure.

VII. CONCLUSION

Power, delay and area are the combining factors in

VLSI design that limits the performance of any circuit. This

work presents a simple technique to reduce the area, delay

and power of a multiplier using CSLA architecture. Several

popular and well-known schemes, with the objective of

improving the speed of the parallel multiplier, have been

developed in past. This proposed modified Wallace and

Dadda multipliers are introduced a very important iterative

realization of parallel multiplier. This advantage becomes

more pronounced for multipliers of bigger than 16 bits. In

this way, the transistor calculation of proposed. Therefore

Wallace and Dadda multipliers are reduced having less area

and low power which makes it simple and capable for VLSI

hardware implementations.

VIII. SIMULATION RESULTS AND ITS
DESCRIPTION

This work has been developed using Xilinx tool it

shows the comparison between the various adders like

ordinary CSLA, Modified CSLA, regular SQRT CSLA,

Modified SQRT CSLA and exposed SQRT CSLA for 8-

bit,16-bit, 32-bit and 64-bit. The parameters on which they

are correlated are area, delay and power. Fig. 10 depicts that

the proposed SQRT CSLA has less number of gates and

since its a less area. Fig. shows the adder circuit for delay

comparison. The results compared in Fig. 12 s hows that the

power consumption of proposed SQRT CSLA is reduced. It

is clear that power, area and delay of proposed SQRT

CSLA for 8-bit, 16-bit, 32-bit and 64-bit is reduced as

compared to other adders.

Array Multiplier Accurate and Approximate Results

Accurate Results

Journal on Science Engineering & Technology
Vo1ume 3, No. 03, September 2016 154

ISSN: 2349-6657 @ JSET

Approximate Results

DADDA Multiplier Modified Accurate and Approximate

Results

Accurate Results

Approximate Results

Wallace Modification Accurate and Approximate Results

Accurate Results

Approximate Results

REFERENCES

[1] V.K. Chippa, S.T. Chakradhar, K. Roy and
A. Raghunathan, “Analysis and characterization of
inherent application resilience for approximate
computing”, Proceedings of the 50th Annual
Design Automation Conference, 2013.

[2] R. Venkatesan, A. Agarwal, K. Roy and
A. Raghunathan, “MACACO: Modeling and
analysis of circuits for approximate computing”,
Proceedings of the International Conference on
Computer-Aided Design, Pp. 667–673, 2011.

[3] S.T. Chakradhar and A. Raghunathan, “Best-effort
computing: Re-thinking parallel software and
hardware”, Proceedings of the 47th Design
Automation Conference, Pp. 865–870, 2010.

[4] E.J. King and E.E. Swartzlander, “Data-dependent
truncation scheme for parallel multipliers”, Proc.
Conf. Rec. 31st Asilomar Conf. Signals, Syst.
Comput., Pp. 1178–1182, 1998.

Journal on Science Engineering & Technology
Vo1ume 3, No. 03, September 2016 155

ISSN: 2349-6657 @ JSET

[5] M.J. Schulte and E.E. Swartzlander, “Truncated
multiplication with correction constant”, Proc. 6th
VLSI Signal Process., Pp. 388–396, 1993.

[6] Y. Liu, T. Zhang and K. K. Parhi, “Computation
error analysis in digital signal processing systems
with overscaled supply voltage”, IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., Vol. 18, No. 4,
Pp. 517–526, Apr. 2010.

[7] V. Gupta, D. Mohapatra, S.P. Park,
A. Raghunathan and K. Roy, “IMPACT: Imprecise
adders for low-power approximate computing”,
Proc. Int. Symp. Low Power Electron. Design,
Pp. 409–414, 2011.

[8] P. Kulkarni, P. Gupta and M. Ercegovac, “Trading
accuracy for power with an under-designed
multiplier architecture”, Proc. 24th Annu. Conf.
VLSI Design, Pp. 346–351, 2011.

[9] A. Momeni, J.Han, P. Montuschi and F. Lombardi,
“Design and analysis of approximate compressors
for multiplication”, IEEE Trans. Comput., Vol. 64,
No. 4, Pp. 984–994, 2015.

[10] N. Zhu, W.L. Goh, W. Zhang, K.S. Yeo and
Z.H. Kong, “Design of low-power high-speed
truncation-error-tolerant adder and its application
in digital signal processing”, IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., Vol. 18, No. 8,
pp. 1225–1229, 2010.

[11] A. K. Verma, P. Brisk, and P. Ienne, “Variable
latency speculative addition: A new paradigm for
arithmetic circuit design”, Proc. Design, Autom.
Test Eur., Pp. 1250–1255, 2008.

[12] S. Banescu, F. de Dinechin, B. Pasca and
R. Tudoran, “Multipliers for floating-point double
precision and beyond on FPGAs”, ACM
SIGARCH Comput. Archit. News, Vol. 38, No. 4,
Pp. 73–79, 2011.

[13] C. Liu, J. Han and F. Lombardi, “A low-power,
high-performance approximate multiplier with
configurable partial error recovery”, Proc. Conf.
Design, Autom. Test Eur., 2014.

[14] S. Sidiroglou-Douskos, S. Misailovic,
H. Hoffmann and M. Rinard, “Managing
performance vs. accuracy trade-offs with loop
perforation”, Proc. 19th ACM SIGSOFT Symp.,
13th Eur. Conf. Found. Softw. Eng. (ESEC/FSE),
Pp. 124–134, 2011.

[15] J. Liang, J. Han and F. Lombardi, “New metrics
for the reliability of approximate and probabilistic
adders,” IEEE Trans. Comput., Vol. 62, No. 9,
pp. 1760–1771, 2012.

[16] A. Lingamneni, C. Enz, K. Palem and C. Piguet,
“Synthesizing parsimonious inexact circuits
through probabilistic design techniques”, ACM
Trans. Embedded Comput. Syst., Vol. 12, Art. No.
93, 2013.

[17] S. Narayanamoorthy, H.A. Moghaddam, Z. Liu,
T. Park and N.S. Kim, “Energy-efficient
approximate multiplication for digital signal

processing and classification applications”, IEEE
Trans. Very Large Scale Integr. (VLSI) Syst.,
Vol. 23, No. 6, Pp. 1180–1184, 2015.

[18] S. Hashemi, R.I. Bahar and S. Reda, “DRUM: A
dynamic range unbiased multiplier for approximate
applications”, Proc. IEEE/ACM Int. Conf.
Comput-Aided Design, Pp. 418–425, 2015.

[19] B. Parhami, “Computer Arithmetic: Algorithms
and Hardware Designs”, New York, NY, USA:
Oxford Univ. Press, 2000.

[20] C. Lee, M. Potkonjak and W.H. Mangione-Smith,
“Media Bench: A tool for evaluating and
synthesizing multimedia and communications
systems”, Proc. 13th Annu. IEEE/ACM Int. Symp.
Microarchitecture, Pp. 330–335, 1997.

[21] D. Zuras and W. H. McAllister, “Balanced delay
trees and combinatorial division in VLSI”, IEEE
J. Solid-State Circuits, Vol.21, No.5, Pp. 814-819,
1986.

[22] L. Dadda, “Some schemes for parallel multipliers,”
Alta Frequenza, Vol. 34, No. 5, Pp. 349–356,
1965.

[23] B. Jose and D. Radhakrishnan, “Delay optimized
redundant binary adders”, Proc. 13th IEEE Int.
Conf. Electron, Circuits Syst. (ICECS),
Pp. 514-517, 2006.

Journal on Science Engineering & Technology
Vo1ume 3, No. 03, September 2016 156

ISSN: 2349-6657 @ JSET

	Introduction
	Introduction about Multipliers
	Array Multiplier
	DADDA Multiplier
	DADDA Tree
	Example of DADDA Reduction on 8X8 Multiplier
	/

	Design of Wallace Tree Adders
	Reduced Complexity Wallace Multiplier Reduction Technique
	The Wallace Tree has Three Steps

	Proposed Approaches-square-Root Carry Select Adder
	Conclusion
	Simulation Results and Its Description
	Array Multiplier Accurate and Approximate Results
	Accurate Results
	Approximate Results
	DADDA Multiplier Modified Accurate and Approximate Results
	Accurate Results
	Approximate Results
	Wallace Modification Accurate and Approximate Results
	Accurate Results
	Approximate Results

	References

