
Abstract--- Mutation testing is taken as a very powerful

tool dependent testing technique but it is too costly. It is a

pleasant way of using large number of test requirements for

ensuring quality. On the other hand it also need of heavy

automation. It is considered costly because of the high

number of requirements it creates compared to other testing

techniques and it is tool dependent for the same reason. In

this paper, we present an incipient technique called data

mutation predicated on engendering an immensely colossal

number of test data from initial test cases either manually or

with some automatic test case generation method. It is

influenced by some mutation testing methods, but varies

from the manner that mutation operators are defined and

utilized. While mutation testing is a technique for

quantifying test adequacy, data mutation is a technique of

test case generation. In traditional mutation testing,

mutation operators are acclimated to convert the program

under test. In contrast, mutation operators in our task are

applied on input data to engender test cases, hence called

data mutation operators. In this paper will be implemented

with the approach on testing an automated modelling

implement to describe the applicability of the proposed

method.

Keywords--- Mutation Testing, Test Cases, Mutation

Operator

I. INTRODUCTION

Software testing is a serious and very important activity

for assessing and achieving the quality of a software

Dr.Y. Kalpana, Associate Professor, VELS University, Pallavaram,

Chennai, Tamil Nadu – 600117, India

Pramod Kumar Mallick, Research Scholar, VELS University,

Pallavaram, Chennai, Tamil Nadu – 600117, India

product [1]. The goal is to identify potential faults in order

to increase the quality of software products. However, in

general, it is not possible to fully automate software testing

activities because of constraints related to undecidable

problems. Mutation Testing is a method of inserting some

faults into programs to test whether the tests pick them up,

thereby validating or invalidating the tests. Mutation testing

is concerned as a testing criterion in effective manner. The

main goal of mutation testing is as follows: (i) to evaluate

the quality of the tests by performing them on mutated code

(ii) to utilize these evaluation to avail and construct more

adequate tests (iii) to thereby engender a suite of valid tests

which can be utilized on authentic programs.

The strong and powerful principle of mutation testing is

using faults that imitate mistakes that a highly confident

programmer would make. To simulate this, simple syntactic

changes are applied to the original program; these changes

produce faulty versions of the program called mutants. If

the original program and a mutant generate different outputs

for a given test case, then the mutant is regarded as “dead".

Therefore, the goal of mutation testing is to find a test set

capable of killing a significant number of mutants.In

mutation testing, mutants are able to categories into First

Order Mutants (FOMs) and Higher Order Mutants (HOMs)

owing to types and quantity of faults initial test case value.

First Order Mutants are produced by applying a mutation

operator only one time [2] whereas Higher Order Mutants

[3] is produced by applying mutation operators in the

programs more than one time.The remaining section of this

paper is organized as follows. Section 2 briefly describes

the cognate work on test case generation. Section 3

describes the proposed method and illustrate with a simple

example. Section 4 concludes the paper and discusses future

A New Approach for Data Mutation Based

Test Case Generation
Dr.Y. Kalpana and Pramod Kumar Mallick

Journal on Science Engineering & Technology
Vo1ume 2, No. 03, June 2015 170

ISSN: 2349-6657 @ JSET

work.

II. LITERATURE SURVEY

Andrews et al. [16] culled eight popular C programs to

compare hand-seeded faults to those engendered by

automated mutation engines. The authors found the faults

seeded by experienced developers were harder to catch. The

authors withal found that faults conceived by automated

mutant generation were more representative of authentic

world faults, whereas the faults inserted by hand

underestimate the efficacy of a test suite by emulating faults

that would most likely never transpire. Murnane and Reed

[4] illustrate that mutation analysis must be verified for

efficacy against more traditional ebony box techniques

which employ this technique, such as boundary value and

equipollence class partitioning. The authors consummated

test suites for a data-vetting and a statistical analysis

program utilizing parity class and boundary value analysis

testing techniques. The resulting test cases for these

techniques were then compared to the resulting test cases

from mutation analysis to identify redundant tests and to

assess the value of any adscititious tests that may have been

engendered.

The program-predicated test generation method [4, 5, 6,

7, 8, 9] research depends on either the analysis of the

program’s source code under test without authentically

executing the program or observations on the dynamic

demeanor of the software during its execution on test cases.

The people aforetime mentioned are called static test

generation methods, such as those taking on symbolic

execution [4-9]; the latter are called dynamic methods are

designated in [10] and [11]. The methods represented in [4-

10] and their variants are path-oriented because the test case

generation algorithms cull definitely culled paths in the

program as input. In contrast, goal-oriented methods plan to

achieve at executing definitely culled verbal expressions or

branches in the program. The algorithm can determine the

paths that cause the verbal expressions or branches to be

executed.

III. PROPOSED SYSTEM ARCHITECTURE

In this section, we present a small concerning teaching

example to demonstrate the basic plans and the data

mutation technique related process and also describe the

system architecture.

Suppose we used to test a quadratic equation program

whose input having three natural numbers a, b, and c as the

input value of the quadratic equation. Its function is to

classify the equation into equal (two solutions are equal), or

unequal (two different solution), or imaginary (i.e get

imaginary value). It’s based on hypothesis sqrt(b**2-

(4*a*c)).

The data mutation testing process consists of an iterative

sequence activities are shown in the following figure 1. The

step by step process of the proposed system architecture is

as follows:

Step 1: Choose Initial Test Cases Values

The data mutation testing commences with culling some

initial test cases either manually or with some automatic test

case generation method. These test data are called the

fundamental value test cases (or seeds) because more test

cases will be engendered from them. When the test cases

have involute structures, it is not facile to obtain an

astronomically immense and adequate set of such initial test

cases. But, in our experiments have shown the method does

not require a sizably voluminous number of initial test

cases. A diminutive number of seeds that contain all

possible types of elements of the input data will be enough.

For example, one may design three test cases for the

quadratic equation program as follows to cover each type of

solution with one test case.

 Test case t1: Input: (a=1, b=2, c=1), Expected

output: two equal solution.

 Test case t2: Input: (a=1, b=3, c=2), Expected

output: two different solutions.

 Test case t3: Input: (a=1, b=2, c=3), Expected

output: Imaginary solution.

Journal on Science Engineering & Technology
Vo1ume 2, No. 03, June 2015 171

ISSN: 2349-6657 @ JSET

Figure 1: Proposed System Architecture

Step 2: Specifying Data Mutation Operators

Data mutation operators are simple transformations on

the input value. They are required to preserve the

syntactical correctness of the input data with veneration to

the structure and rules on the input, if the testing is only

concerned with felicitous input. Otherwise, invalid input

can be engendered as well by breaking the structure or

rules. Mutations’ manual application can be carried out.

Alternatively, the data mutation operators can be

implemented in a software implement so that the generation

of mutants of the initial test case value can be automated.

For testing the quadratic equation program, the

organization of the input data consists of three parameters.

Therefore, in order to engender test cases as sundry kinds of

instances of the structure, data mutation operators should be

designed to mutate the initial test case value on the

parameters, such as to transmute one parameter’s value by a

modicum, to transmute the relationships between the

parameters by interchanging (swapping) their values, etc. A

rule on the valid input data is that the parameters must be

natural numbers. Data mutation operators can withal be

designed to test the program on both valid and invalid input

data by introducing test cases that infringe the constraint.

For example, the following data mutation operators can

be defined on the input data for the Quadratic Equation

program.

 IVP: Increase the parameter value by 1;

 DVP: Decrease the parameter value by 1;

 SPL: Set the parameter value to a very large

number, say 10000;

 SPZ: Set the parameter value to 0;

 SPN: Set the parameter value to a negative number,

say -1;

 DAB: Interchange the parameter values a and b;

 DAC: Interchange the parameter values a and c;

 DBC: Interchange the parameter values b and c;

 RPL: Rotate the parameter values towards left;

 RPR: Rotate the parameter values towards right.

Step 3: Mutant Test Case Generation

Given a set of initial value and the set of categorically

designed mutation operators are applied to each value to

engender a set of mutants. The software implement that

carries out the data mutation operations should additionally

automatically locate pertinent elements in the input data for

each mutation operator. The number of mutants carried out

from an initial value is decided by two factors: the types

and numbers of elements in the initial value and the

designed data mutation operators. It is worth noting that

some mutation operators can be applied to a mutant to

engender other mutants, which are called the second

generation mutants of the pristine test case value.

Similarly, a mutant of the second generation can

additionally be acclimated to engender the third generation

mutants, and so on. Whether high generation mutants

should be developed and used depends on the concrete

requisite of the test.For instance, by applying the mutation

operator IVP to test case t1 on parameter a, we can obtain

the following test case t4.Input: (a=2, b=2, c=1).

Among the above 10 data mutation operators, the first 5

can be applied on each of the 3 parameters of a seed, so

thoroughly (5*3 +5)*3 = 60 test cases covering all sorts of

coalescences of data elements can be systematically

engendered from the three initial test case values.

Journal on Science Engineering & Technology
Vo1ume 2, No. 03, June 2015 172

ISSN: 2349-6657 @ JSET

Step 4: Initial Value and Mutants Execution

The initial value and their mutants are executed under

software testing. On each test case, the outputs and other

aspects of dynamic deportment of the software are observed

and recorded for further analysis. Our approach does not

depend on any concrete approach that the demeanor of the

software is observed and recorded.

Step 5: Mutant Test Case Classification

The mutants can be relegated into either dead or alive

according to the recorded deportment and outputs of the

program under test is akin to traditional mutation testing. A

particular mutant is relegated as “dead”, if the software

under test under execution on the mutant is different from

the execution on the initial test case. Otherwise, the same

mutant is relegated as “alive”. Depending upon the

functionality of the software under test, it varies that what

precisely designates by two executions of the software on

two test data are different.

For example, for a correctly implemented Quadratic

Equation program, the execution on the mutant test case t4

will output imaginary solution while the execution on its

initial value t1 will output two equal solutions. Therefore,

the t4 test case will be dead after the test execution.

In testing other software program, relegation of mutants

may be less simple as the Quadratic Equation program. For

example, if the functionality of the software under test is to

transform a model into executable code, the analysis of an

execution of the software may involve the authentic

execution of the code engendered from the pristine model

as well as the execution of the code engendered from the

mutants if no error message reported by the code

engenderer. This may require further analysis and testing on

the engendered code to distinguish them.

A conception of “dead” and “alive” mutant is different

to the conception in traditional mutation testing. In

traditional mutation testing, program mutants are relegated

into dead or alive according to whether their deportment on

a given test set is different from the pristine program. The

relegation of mutants into dead and live plays a

consequential role in that the percentage of dead mutants

designates the fault detecting ability of the test set.

However, it is less paramount in data mutation testing.

Neither the aliveness nor the dead of a mutant test case

betokens the program is veridical on the test case. A live

mutant should be further analyzed to find the reason why

the mutation of the input does not affect the output of the

program under test. A dead mutant additionally needs

further analysis because a difference in the demeanor of the

program does not indispensably implicatively insinuate that

the program deports correctly on the mutant. Nevertheless,

mutation scores for data mutation testing can accommodate

as utilizable bespeakers to guide further analysis of the test

efficacy.

IV. CONCLUSION AND FUTURE

ENHANCEMENTS

Mutants are mainly designed to be used as practical

replacements for real faults in software testing research and

in practice by developers. If mutation score is correlated

with fault detection then this is valid one. The incipient

approach presented in this paper aims at acclimating

mutation analysis for building trust into incipient test cases

programs utilizing this technique. The future enhancement

of this paper is testing a model consistency checker will be

reported later, the difference is in the checker’s reports on

the consistency of the models.

REFERENCE

[1] Myers, G.J., Sandler, C., Badgett, T.: (2011) “The

Art of Software Testing”. 3rd edition. Wiley

publications.

[2] Harman, M., Jia, Y.: (2009) “Analysis and survey

of the development of mutation testing”. IEEE

Transactions on Software Engineering journal,

649-678.

[3] Jia, Y, Harman, M, (2009) “Higher order mutation

testing”. Journal of Information and Software

Technology, 1379-1393.

[4] Howden, W. E. (1975), “Methodology for the

generation of program test data”. IEEE

Transactions on Computers, 554-560.

[5] Ramamoorthy, C., Ho, S. and Chen, W. (1976),

“On the automated generation of program test

Journal on Science Engineering & Technology
Vo1ume 2, No. 03, June 2015 173

ISSN: 2349-6657 @ JSET

data”. IEEE Transactions on Software

Engineering, 293-300.

[6] King, J. (1975), “A new approach to program

testing”. International Conference on Reliable

Software proceedings, Los Angeles, California,

USA, 21-23 April, pp. 228-233. ACM, New York,

NY, USA.

[7] Clarke, L. (1976), “A system to generate test data

and symbolically execute programs”. IEEE

Transactions on Software Engineering, 215-222.

[8] Howden, W. E. (1977), “Symbolic testing and the

DISSECT symbolic evaluation system”. IEEE

Transactions on Software Engineering, 266-278.

[9] Howden, W. E. (1978), “An evaluation of the

effectiveness of symbolic testing”. Software-

Practice and Experience, 381-397.

[10] Korel, B. (1990), “Automated software test data

generation”. IEEE Transactions on Software

Engineering, 870-879.

[11] Beydeda, S. and Gruhn, V. (2003), “BINTEST -

binary search-based test case generation”. 27th

International Computer Software and Applications

Conference proceedings (COMPSAC'03), Dallas,

TX, USA, 3-6 November, pp. 28-33. IEEE

Computer Society, Los Alamitos, CA, USA.

[12] Chen, H. Y., Tse, T. H. and Chen, T. Y. (2001)

“TACCLE: A methodology for Object-Oriented

Software Testing at the Class and Cluster Levels”.

ACM Transactions on Software Engineering and

Methodology, 56-109.

[13] Li, S., Wang, J. and Qi, Z.-C. (2004), “Property-

oriented test generation from UML state charts”.

19th International Conference on Automated

Software Engineering Proceedings (ASE'04), Linz,

Austria, 20-25 September, pp. 122-131. IEEE

Computer Society, Los Alamitos, CA, USA.

[14] Chan, K. P., Chen, T. Y. and Towey, D. (2006),

“Restricted Random Testing: Adaptive Random

Testing by Exclusion”. International Journal of

Software Engineering and Knowledge

Engineering, 16, 553-584.

[15] G. Rothermel, M. Harrold, J. Ostrin, and C. Hong.

(1998), “An empirical study of the effects of

minimization on the fault detection capabilities of

test suites”. International Conference on Software

Maintenance Proceedings (ICSM), pages 34–43.

[16] R. A. DeMillo, R. J. Lipton and F. G. Sayward

(1978), “Hints on test data selection: Help for the

practical programmer”, IEEE Computer number

11, pp. 34-41.

[17] P. G. Frankl, S. N. Weiss and C. Hu (1997), “All-

uses vs. mutation testing: An experimental

comparison of effectiveness”, Journal of Systems

Software number. 38, pp. 235-253.

[18] R. M. Hierons, M. Harman and S. Danicic (1999),

“Using Program Slicing to Assist in the Detection

of Equivalent Mutants”, Software Testing,

Verification and Reliability, vol. 9, no. 4, pp. 233-

262.

[19] A. J. Offutt and J. Pan (1996), “Detecting

equivalent mutants and the feasible path problem”,

Annual Conference on Computer Assurance

(COMPASS 96), IEEE Computer Society Press,

pp. 224-236.

[20] R. T. Alexander, J. M. Bieman, S. Ghosh and J.

Bixia (2002), “Mutation of Java objects,” 13th

International Symposium on Software Reliability

Engineering, Fort Collins, CO, USA, 2002, pp.

341-351.

Journal on Science Engineering & Technology
Vo1ume 2, No. 03, June 2015 174

ISSN: 2349-6657 @ JSET

