
Abstract--- Rain streaks detection and removal from 

color image -video is a challenging problem. The rain streak 

removal is considered as image denoising task. In color 

image –video based rain streaks removal, where the 

dictionary learning process can be only applied once for the 

first frame in a video clip of the same scene. The dictionary 

learning can be also used for removal of rain streaks for the 

succeeding frames in the clip, which is useful to both 

reduce the computational complexity and maintain the 

temporal consistency of the video. The proposed Color 

image - video based rain streaks removal framework based 

on the sparse representation. Then the high frequency part 

was decomposed into rain and non-rain component by using 

the learning sparse representation based dictionaries. To 

separate a rain streaks from high frequency part using the 

muti set feature. The multi set feature, including HOG 

(Histogram Oriented Gradients), DOF (Depth of Field), and 

eigen color. The high frequency part and muti set features is 

applied to remove the most rain streaks. The DOF feature is 

used to help to identify the main subjects to preserve in a 

rain image. The rain streaks are usually neutral color, where 

the eigen color feature is used to analyse the key features of 

the rain streaks. The both DOF and Eigen color features are 

used to identify and separate the non rain component from 

the misidentified rain component of an image. Our 

proposed framework may be also integrated with any sparse 

representation–based super-resolution framework to achieve 

super-resolution of a low quality video and noisy image 

video. Rain removal is a very useful and important 

technique in applications such as security surveillance, 

audio/video editing and investigations. 
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I. INTRODUCTION 

ASSUMING an image is a linear mixture of multiple 

source components, image decomposition aims at 

determining such components and the associated weights 

[1], [2].For example, how to properly divide an image into 
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parts has been investigated in applications of image 

compression [3], image in painting [4], [5], or related image 
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analysis and synthesis tasks. Consider a fundamental 

problem of decomposing an image of N pixels into C 

different N-dimensional components, one needs to solve a 

linear regression problem with unknown variables. While 

this problem is ill-posed, image sparsity prior has been 

exploited to address this task [1]. As a result, an input 

image can be morphologically decomposed into different 

patches based on such priors for a variety of image 

processing applications. Before providing the overview and 

highlighting the contributions of our proposed method, we 

will first briefly review morphological component analysis 

(MCA), which is a sparsere presentation based image 

decomposition algorithm, and has been successfully applied 

and extended to solve the problems of image denoising [6]–

[8], image in painting [5], [8], and image deraining (i.e., 

rain removal) [9], [10]. 

A. MCA for Image Decomposition 

MCA utilizes the morphological diversity of different 

features contained in the data to be decomposed and to 

associate each morphological component to a dictionary of 

atoms [1],[5], [11]. Suppose an image I of N pixels is a 

superposition of K components (called morphological 

components), denoted by where denotes the k-th 

component, such asthe geometric or textural component of 

the image I. To decomposeI into ,MCA iteratively 

minimizes the following energy function: where denotes the 

sparse coefficients corresponding to with respect to the 

dictionary , is a regularization parameter, and is the energy 

function defined according to the type of (global or local 

dictionary).The MCA algorithms solve (1) by iteratively 

performing for each component , the following two steps: 

(i) update of the sparse coefficients: this step performs 

sparse coding to solve or , where represents the sparse 

coefficients of the p-th patch extracted from , and P is the 

total number ofextracted patches, to minimize while fixing 

and. 

(ii) update of the components: this step updates or while 

fixing or . More details about MCA can be found in [1], [5], 

[11]. 

II. EXPERIMENTS

To evaluate the performance of our proposed method, 

we conduct experiments for addressing two single-image 

denoising tasks: rain removal and denoising (with Gaussian 

noise). We consider the patch size of each image as 16 16 

pixels, and the number of dictionary atoms . As suggested 

in [17],the regularization parameter and the maximum 

sparsity value for the OMP algorithm are set as 0.15 and 10, 

respectively. For LPF preprocessing techniques, we have 

the spatial and intensity- domain standard deviations for 

bilateral filtering as 6 and0.2, respectively. All images are 

of size 256 256 pixels in our experiments. 

A. Performance Evaluation On Single Image Rain 

Removal 

We collect several synthetic rain images from the 

Internet or the photo-realistically rendered rain video 

frames provided in[21], and thus we have ground-truth 

images without rain streaks presented for PSNR calculation. 

To evaluate the performance of our proposed method for 

rain removal, we compare our method with bilateral 

filtering (denoted by “Bilateral”) [12],K-SVD [7],and 

BM3D [13] denoising algorithms. We set large standard 

deviation values and 35 for K-SVD and BM3D algorithms, 

respectively. We note that, during the preprocessing stage 

of our framework, larger values allow us to remove high 

spatial frequency patterns including possible rain streaks 

from the low spatial frequency parts of the input image. We 

do not (and it is not possible) fine tune such parameters for 

removing the rain streaks only. In addition to the above 

methods, we consider two of our prior rain removal works: 

MCA-based rain removal (denoted 
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Self-Learning based Image Decomposition with 

Applications to Single Image Denoising  

Fig. 7.Example rain removal results. Note that the input 

image is the noisy version of ground truth image with rain 

streaks presented. Rain removal outputs are 

produced by the methods of (a) Context-based [10], (b) 

MCA-based [9], (c) Bilateral [12], (d) ours with Bilateral, 

(e) K-SVD [7], (f) ours with K-SVD, (g) BM3D[13], and 

(h) ours with BM3D. 

Fig. 8.Example rain removal results. Note that the input 

image is the noisy version of ground truth image with rain 

streaks presented. Rain removal outputs are produced by the 

methods of (a) Context-based [10], (b) MCA-based [9], (c) 

Bilateral [12], (d) ours with Bilateral, (e) K-SVD [7], (f) 

ours with K-SVD, (g) BM3D[13], and (h) ours with 

BM3D.by “MCA-based”) [9] and rain removal via common 

context pattern discovery (denoted by “Context-based”) 

[10]. These two methods can be considered as bilateral-

filtering based methods, since they require a LPF stage with 

a bilateral filter. Table II lists the PSNR values of different 

bilateral-filtering based methods over three different rain 

images. From this table, we see that our proposed method 

achieved the highest or comparable PSNR values among 

different approaches. To show that we do not limit the use 

of bilateral filtering as the LPF algorithm, we further apply 

K-SVM andBM3D in our preprocessing stage, and compare 

the rain removal results with using these two denoising 

algorithms directly. As listed in Table III, it can be seen that 

our proposed method clearly improved the PSNR values 

than these two state-of-the-art denoising algorithms. To 

qualitatively evaluate the performance, we show an 

example rain removal result in Fig. 6, in which an input 

color image and its rain removed version are presented. We 

note that when removing rain streaks from color images, we 

represent such images in the YUV space and perform 

denoising in the Y domain. To better visualize and to 

compare the results, Figs. 7and 8 show example rain 

removal images in grayscale. From these figures, it can be 

observe that although Bilateral, K-SVD, and BM3D 

methods were able to remove most rain streaks, these 

denoising techniques inevitably disregarded image 

details(e.g., high spatial frequency parts). While applying 

these techniques in our LPF preprocessing stage, we were 

able to successfully identify/recover most non-rain image 

details and thus achieved improved visual quality. 

 Transactions on Multimedia 

Fig. 9.Example rain removal results. (a) Original image 

with rain streaks presented,(b) the ground truth version of 

(a) (i.e., rain removed), (c) denoising output using bilateral 

filtering, (d) our denoising result. It is worth noting that, 

although our prior MCA-based approach successfully 

discarded most rain streaks without significantly degrading 

image quality, parts of non-rain components were also 

removed due to the heuristic dictionary partition by K-

means clustering algorithm. While our prior context-based 

method produced comparable rain removal results, it 

requires one to perform context-constrained image 

segmentation [10] on input images, and thus significantly 

increases the computationalcosts.In addition, we perform 

single-image denoising experiments on real-world rainy 

images. In particular, we consider theimage frames of the 

video data which were utilized in [25].The videos in [25] 

were captured in real rainy scenes withstatic backgrounds, 

and the authors proposed to adjust cameraparameters for 

removing or enhancing the presence of rainstreaks. Thus, 

using their video data, we are able to collect real-world 

rainy images and the corresponding ground truth versions. 

We show example denoising results in Figs. 9 and10. From 

these two figures, it can be seen that our approach produced 

satisfactory rain removal results on real-world images with 

rainy scenes. We note that, although bilateral filtering was 

able to remove high spatial frequency patterns such as rain 

streaks while preserving edges in Figs. 9 and 10, a large 

portion of image details were also removed. As a result, an 

automatic and self-learning based approach likes ours is 

preferable in removing particular noise patterns from the 

input image. 
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B. Performance Evaluation on Image Denoising 

To evaluate the performance of our approach for image 

denoising(with Gaussian noise), we collect and conduct 

experiments on several images considered in [13]. We 

manually add Gaussian noise with to the input noise-free 

images Fig. 10. Example rain removal results. (a) Original 

image with rain streaks presented, (b) the ground truth 

version of (a) (i.e., rain removed), (c) denoising output 

using bilateral filtering, (d) our denoising result. for 

addressing this task. Note that if the for the Gaussian 

function is known in advance, both K-SVD and BM3D 

algorithms will be expected to achieve excellent denoising 

results. However, we assume this exact parameter choice is 

not known(which is practical), and we simply set large 

standard deviation values for both algorithms. Similar to the 

scenarios for rain removal, this would allow us to remove 

high spatial frequency patterns including possible Gaussian 

noise from the low spatial frequency parts of the input 

image without finetuning the parameter . We also compare 

our algorithm with denoising methods not requiring the 

prior knowledge on for the Gaussian noise. We consider the 

SURE-LET algorithm [26], which relies on a purely data-

adaptive unbiased estimate of the mean-squared error, so 

that the Gaussian noise can be removed without knowing 

the Gaussian parameter in advance. Table IV lists the PSNR 

of different denoising approaches, including ours with three 

different LPF/denoisng techniques applied. From this table, 

it can be seen that our approach produced improved 

denoising results than the standard LPF/denoising 

approaches did (i.e., Bilateral filtering, K-SVD, SURE-

LET, andBM3D). For qualitative comparisons, Figs. 11 and 

12 show example denoising results produced by different 

methods. From these figures, we see that standard 

LPF/denoising methods were not able to achieve 

satisfactory results if parameters like are not given in 

advance. Furthermore, although the SURE-LET based 

approach was able to outperform approaches using K-SVD 

for Gaussian noise removal, BM3D-based approaches still 

achieved the best denoising performance (i.e., BM3D with 

ours).It is worth noting that, while our method 

quantitatively and qualitatively outperformed others, we do 

not need to fine-tuneour approach with or assume such 

parameters are known in 

PERFORMANCE COMPARISONS (IN TERMS OF 

PSNR) OF DIFFERENT IMAGE DENOISING 

APPROACHES. 

NOTE THAT WE PRESENT OUR RESULTS USING 

THREE DIFFERENT LPF OR DENOISING 

TECHNIQUES 

Fig. 11.Example image denoising results. Note that the 

input image is the noisy version of ground truth image (with 

Gaussian noise). Denoising outputs are produced by the 

methods of (a) Bilateral [12], (b) ours with Bilateral, (c) K-

SVD [7], (d) ours with K-SVD, (e) SURE-LET [26], (f) 

ours with SURE-LET, (g) BM3D [13], and (h) ours with 

BM3D.Fig. 12.Example image denoising results. Note that 

the input image is the noisy version of ground truth image 

(with Gaussian noise). Denoising outputs are produced by 

the methods of (a) Bilateral [12], (b) ours with Bilateral, (c) 

K-SVD [7], (d) ours with K-SVD, (e) SURE-LET [26], (f) 

ours with SURE-LET, (g)BM3D [13], and (h) ours with 

BM3D.advance (which might not be practical). From the 
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above experiments, we again confirm the effectiveness and 

robustness of our approach for image denoising, which can 

be integrated with existing LPF/denoising techniques in the 

LPF preprocessing stage. In other words, we do not limit 

the use of our proposed framework to any particular LPF or 

denoising algorithm. Although real-time processing is not 

of concern of this paper, we provide the remarks on 

computation time for different 

 TRANSACTIONS ON MULTIMEDIA, learning stages 

of our proposed framework as follows. Inour proposed 

method, it takes about 100 seconds to perform denoising for 

an input image of 256 x 256 pixels. In particular, it takes 

about 3 seconds to perform bilateral filtering (i.e., 

identifying potential high-frequency noise patterns), 1 

minute for learning the sparse-representation based 

dictionary, 30seconds for performing affinity propagation to 

identify image components of interest, and 5 seconds for 

reconstructing the image output. We note that, the above 

runtimes were obtained on an Intel Quad Core 2 PC with 

2.66 GHz processors and 4GRAM. 

III. CONCLUSION

In this paper, we presented a learning-based image 

decomposition framework for single image denoising. The 

proposed framework first observes the dictionary atoms 

from the input image for image representation. Image 

components associated with different context information 

will be automatically learned from the grouping of the 

derived dictionary atoms, which does not need the prior 

knowledge on the type of images nor the collection of 

training image data. To address the task of image denoising, 

our proposed method is able to identify image components 

which correspond to undesired noise patterns. Experiments 

on two types of single image denoising tasks (with 

structured and unstructured noise) confirmed the use of our 

proposed method, which was shown to quantitatively and 

qualitatively outperform existing denoising approaches. 
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