
Abstract--- With a rapidly increasing number of 

devices sharing access to the 2.4 GHz ISM band, 

interference becomes a serious problem for 802.15.4-based, 

low-power sensor networks. Consequently, interference 

mitigation strategies are becoming commonplace. In this 

paper, we consider the step that precedes interference 

mitigation: interference detection. We have performed 

extensive measurements to characterize how different types 

of interferers affect individual 802.15.4 packets. From these 

measurements, we define a set of features which we use to 

train a neural network to classify the source of interference 

of a corrupted packet. Our approach is sufficiently light-

weight for online use in a resource-constrained sensor 

network. It does not require additional hardware, nor does it 

use active spectrum sensing or probing packets. Instead, all 

information about interferers is gathered from inspecting 

corrupted packets that are received during the sensor 

network’s regular operation. Even without considering a 

history of earlier packets, our approach reaches a mean 

classification accuracy of 79.8%, with per 

interfereraccuracies of 64.9% for WiFi, 82.6% for 

Bluetooth, 72.1% for microwave ovens, and 99.6% for 

packets that are corrupted due to insufficient signal 

strength. 
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I. INTRODUCTION 

In this paper, we describe an approach that enables 

resource-constrained sensor nodes to classify individual 

corrupted 802.15.4 packets according to the cause of 

corruption. Using data from our extensive measurements on 

how different interferers affect802.15.4 communication, we 

show that each interferer has characteristic patterns that 

emerge from observing the (1) Link Quality Indicator (LQI) 

of an interfered 802.15.4packet, (2) the signal strength 

during packet reception, and (3) information about what 

parts of the packet are corrupted. We define a set of features 

on these three observations that extract the essential 

information. Our features are sufficiently light-weight so 

that a sensor node can compute them for a given corrupted 

packet. A neural network maps features to an interference 

class, i.e., it allows to determine the type of interferer from 

the data collected about an individual corrupted packet. We 

implement a fixed-pointneural network on the TelosB 

platform to demonstrate the feasibility. A key strength of 

our approach is its resource efficiency: It does not require 

active spectrum sensing, additional hardware, or probing 

packets. Instead, it gathers information about interference 

only during the regular operation of the sensor network. 

Assuming that the network uses either forward error 

correction or retransmissions, our approach does not incur 

any communication overhead. The main energy cost of our 

approach comes from turning on the Micro Controller Unit 

(MCU) during packet reception, whereas usually it would 

be woken up only when packet reception is completed. 
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II. RELATED WORK

Relevant research in the WiFi domain includes Airshark 

[16], a system that uses standard802.11 cards to sample the 

spectrum. The sampled data is analyzed using 

cyclostationary process methods to detect transmission 

patterns, which are then used to classify interferers. Another 

example is RFdump [12], which uses a software-defined 

radio to detect which devices are accessing the medium. RF 

dump aims to provide a tcpdump like tool for the wireless 

communication. Gollakota et al. describe how antenna 

diversity in 802.11n can be exploited to reconstruct 

interfered signals [6]. All these approaches have in common 

that they require advanced signal processing capabilities 

that are usually not available in sensor networks. Cisco has 

developed a spectrum analyzer for network analysis that is 

capable of classifying radio devices [2]. 

In sensor networks, interference detection can help 

mitigation, which in turn increases the network lifetime by 

reducing unsuccessful communication attempts. 

Chowdhuryet al. describe an approach to interference 

classification by actively scanning channels for 

characteristic spectrum usage [1]. In contrast to our work, 

this approach comes at a higher energy cost, because the 

radio needs to be turned on even when no sensor network 

communication is ongoing. Their work is also concerned 

with interference mitigation. Hauer et al. describe how 

detection of WiFi interference can be used for interference 

mitigation [8]. Similar to our approach, they also consider 

RSSI during packet reception for identifying interference. 

Their work is concerned with selectively retransmitting 

parts of a packet that are suspected to be interfered, without 

having certain knowledge about what caused the corruption. 

A large body of works considers the effect of interference 

on sensor networks in terms of high-level metrics such as 

packet reception rate.  

III. TECHNICAL BACKGROUNDS

We briefly summarize the technical aspects of 802.15.4, 

802.11b/g, Bluetooth, and microwave ovens that are 

relevant to our goal of interference classification. 802.15.4 

The 802.15.4 standard defines a physical layer and a MAC 

layer for low power, low-rate wireless networks [10]. We 

consider 802.15.4 at 2.4 GHz in this paper, because most 

interference is faced in this popular ISM band. At 2.4 GHz, 

16 channels of 2 MHz width are defined with an inter-

channel spacing of 3 MHz. A maximum transmission power 

of 0 dBm is common. The standard implements direct 

sequence spread spectrum by mapping each four-bit symbol 

to be transmitted to a pseudo-random32-chip sequence. 

Offset quadrature phase-shift keying is used for modulation. 

The data rate is 250 kbps, the symbol period is 16 μs. 

The format of an 802.15.4 PHY packet is shown in Fig. 

1. Each packet begins with a preamble, which consists of

four zero bytes, followed by a one-byte start frame 

delimiter(SFD) field with a fixed value. The frame length 

field contains the number of the packet’s payload bytes, 

which may be up to 127. The length includes the two-byte 

frame check sequence (FCS) field which trails the packet 

payload. The FCS field contains a checksum which is 

calculated over the length field and the payload bytes. A 

receiver synchronizes to incoming zero-bytes; after 

receiving four zero-bytes, it scans for an SFD. Only after 

correctly receiving the SFD, it reads the following payload 

field and then reads the specified number of payload bytes. 

If no SFD is received after four zero-bytes, the receiver 

synchronizes to incoming zero-bytes again. A receiver can 

detect transmission errors by comparing the FCS against the 

checksum calculated for the received packet. 

IV. INTERFERENCE MEASUREMENTS

We conducted a series of experiments in which an 

802.15.4-based sensor network was exposed to radio 

interference. In each experiment, we activated one 

interference source and collected data on the corrupted 

802.15.4 packets. The purpose of these experiments is 
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twofold. First, we collected corrupted packets to gain a 

better understanding of the effects that different interferers 

have on individual 802.15.4 packets. Second, we use 

subsets of the data for training and evaluating our 

classification approach. The experiments were carried out in 

an anechoic chamber, which is shielded from outside radio 

transmissions. Such a controlled environment gives us high 

confidence that a corrupted 802.15.4 packet recorded during 

an experiment was indeed corrupted by the source of 

interference that we have activated. In a less controlled 

environment, e.g., our university building, it is virtually 

impossible to prevent radio devices that are outside of our 

control from affecting the experiments. The anechoic 

chamber is also constructed to minimize multipath 

propagation. This is desirable, because multipath 

propagation is strongly dependent on the concrete physical 

layout of an environment, and we do not want to capture 

environment-specific effects in our measurements. 

V. INTERFERENCE DETECTION AND

CLASSIFICATION 

We describe a classifier that assigns each incorrectly 

received packet to interference class. Each interference 

class represents a source of interference: WiFi, Bluetooth, 

or microwave. We further define an additional class to 

represent packets that have been received incorrectly in the 

absence of an interference source due to insufficient signal 

strength at the receiver. In this section, we first consider 

what data can be feasibly gathered in a sensor network for 

such a classification task; we then consider how this data 

can be condensed into numerical features. We discuss 

suitable classification algorithms, and finally consider 

implementation, energy cost and overhead. 

VI. CLASSIFICATION ALGORITHM

We use a supervised learning approach to train a 

classifier to assign each corrupted packet to a class 

representing either WiFi, Bluetooth or microwave 

interference, or corruption due to insufficient signal 

strength. In supervised learning, a classifier is trained on a 

set of examples for which the correct class (i.e., the 

interference source in our case) is given. A corrupted packet 

is represented by the features described in the previous 

section. The learning phase, which is computationally more 

costly than classifying individual packets after training is 

completed, is carried out on a regular PC, whereas the 

actual classification is performed online in the sensor 

network. We consider two different classification 

algorithms: Support Vector Machines (SVMs, [3]) and 

feed-forward neural networks [18]. An SVM transforms the 

feature vectors to a high-dimensional space and, during the 

learning phase, constructs (potentially non-linear) hyper 

planes to separate the vectors from the learning set 

according to their classes. In the classification phase, the 

SVM determines the class of the input vector by 

considering on which side of the hyper planes the vector 

lies. Unfortunately, it turned out that online classification in 

a sensor network with SVMs is not feasible in our case due 

to the limited amount of RAM available on the sensor 

nodes. We nevertheless present results for the SVM 

classification in the evaluation as a reference case, since 

they are often considered the best ―out-of-the box‖ 

classification algorithm [15]. Furthermore, SVMs find a 

global, unique solution, whereas neural networks may get 

stuck in local minima during the learning phase. Feed-

forward neural networks are a class of classification 

algorithms inspired by biological neural networks. They are 

represented by directed acyclic graphs, where each node 

represents a computational unit and weighted edges 

describe input/output relationships between the nodes. Each 

node represents an input value (i.e., a component of a 

feature vector), an output value, or an activation function, 

which usually is a sigmoid function that takes as input the 

weighted outputs from incoming edges. During the learning 

phase, an optimal set of edge weights is found. In the 

classification phase, an input feature vector is propagated 

through the network and the output nodes indicate the 

classification result. After the costly learning phase, a 
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neural network can be represented by a matrix and the 

classification cost is dominated by matrix multiplications. 

Thus, with careful implementation, the use of a feed-

forward neural network is feasible even on a resource-

constrained platform like TeosB. 

VII. CONCLUSION AND FUTURE WORK

In this paper, we have investigated the feasibility of a 

light-weight interference detection and classification 

approach that only uses data that can be gathered during a 

sensor network’s regular operation. The reason to only use 

such data is to keep energy consumption as low as possible. 

We described a set of features that allows us to define the 

characteristic patterns that we observe for different sources 

of interference. We also demonstrated that a fixed-point 

neural network reaches a mean classification accuracy of 

79.8% for packets of 64 bytes and more. For this paper, we 

have gathered training and testing data in an anechoic 

chamber, which is a highly controlled environment. While 

we introduce a certain variance into our data by using 

different hardware models for the interferers, we would 

expect a less controlled radio environment to contribute 

further variance due to multipath propagation. Thus, we 

also plan to perform experiments in the offices of our 

university to test the robustness of our features. However, 

we face the practical issue of establishing ground truth in 

such an environment—we could not with certainty say that 

a packet is interfered by the interferer that we have 

activated, because an RF device outside our control (e.g., 

the university WiFi) may also affect our experiments. 

Interference detection and classification is an important tool 

for debugging network problems and mitigation strategies, 

but it is not an end in itself. Therefore, we plan to integrate 

our approach into an existing interference mitigation 

strategy. If our approach helps to make significantly better 

mitigation decisions in an uncontrolled environment, we 

may avoid the aforementioned issue of establishing ground 

truth for measuring the performance of our classification 

approach. The aim of this work was to assess the feasibility 

of interference classification with the limited information 

that can be gathered from corrupted packets. We have 

focused on classifying the source of interference for 

individual packets. An interesting track of future work we 

plan to follow is to incorporate information about 

previously received, corrupted packets into the 

classification process. We believe this may yield a 

significant increase in accuracy. However, incorporating 

previous information requires careful consideration, 

especially regarding situations in which multiple interferers 

are present, or in which the source of interference rapidly 

changes due to high mobility. 
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