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Abstract--- Cloud computing has emerged as a 

mainstream paradigm for hosting various types of 

applications by supporting easy-to-use computing services. 

They are particularly relevant for applications requiring 

large volumes of computing power exceeding the 

computational capacity However, the use of hybrid clouds 

introduces the challenge of how much and when public 

cloud resources should be added to the pool of resources 

and especially when it is necessary to support quality of 

service requirements of applications with deadline 

constraints. These resource provisioning decisions are far 

from trivial if scheduling involves data-intensive 

applications using voluminous amounts of data. Issues such 

as the impact of network latency, bandwidth constraints, 

and location of data must be taken into account in order to 

minimize the execution cost while meeting the deadline for 

such applications. In this paper, we propose a new resource 

provisioning algorithm to support the deadline requirements 

of data-intensive applications in hybrid cloud environments. 

To evaluate our proposed algorithm, we implement it in the 

CloudSim which proves our resource provisioning 

algorithm is able to more efficiently allocate resources in 

cost effective manner compared to existing methods. 

I. INTRODUCTION 
Data-intensive applications involving the analysis of 

large datasets have become increasingly important as many 
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areas of science and business are facing thousand-fold 

increases in data volumes [1]. The explosive growth of data 

is mainly driven by the rapid expansion of the Internet, 

smart cities, social networks, e-commerce, and widespread 

usage of high-throughput instruments, sensor networks, 

Internet of Things devices, accelerators, and 

supercomputers. This expansion forms a voluminous 

amount of structured and unstructured data, known as big 

data that needs to be processed to be useful [1]. The ability 

to analyze and process such large quantities of data has 

become an important and challenging mission for many 

fields. Cloud computing [2] platforms are becoming one of 

the most preferred ways of hosting data-intensive 

applications. Challenges posed by big data can be overcome 

with the aid of cloud computing services offering the 

illusion of an infinite pool of highly reliable, scalable, and 

flexible computing, storage, and network resources. 

However, in many cases, data isavailable in local IT 

infrastructure with limited processing capacity. Therefore, it 

is not time or cost effective to transfer the whole dataset to 

clouds to be processed. To tackle this issue, the cloud 

bursting model can be used in which an application runs in 

a private infrastructure and bursts onto a public cloud when 

more resources are required. This model has found broad 

acceptance due to its benefits such as cost reduction and 

dealing with issues related to the location of sensitive data 

[3]. To achieve the vision of cloud bursting, hybrid cloud 

middleware is required to acquire and release resources 

from both local infrastructures and external cloud providers 

in a seamless fashion [4]. It is essential for such hybrid 

cloud middleware to make efficient decisions regarding the 

workloads that must be outsourced to the public cloud based 
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on the timing and number of externally provisioned 

resources to meet deadline constraints of applications. In 

such a setting, however, building a middleware that jointly 

minimizes cost and meets the deadline for applications is far 

from trivial [5]. There is a large body of literature aimed at 

cost and execution time minimization of running 

computational tasks in hybrid cloud environments. These 

studies mostly overlook aspects such as data locality, the 

impact of network bandwidth constraints, and data transfer 

time which significantly affect the time and cost 

performance of the scheduling. This is exacerbated for data 

intensive applications where the data transfer time to the 

external cloud is often comparable to the computational 

time. In this paper, one of our main goals is to take these 

aspects into consideration for scheduling and resource 

provisioning of deadline-driven data intensive applications 

in hybrid cloud environments. 

II. PROBLEM DOMAIN 
One of the main challenges for efficient scaling of 

applications is the location of the data relative to the 

available computational resources [6]. Co-locating data and 

computation is evidently ideal in terms of performance 

especially for data-intensive applications. However, this is 

not always feasible for various reasons. For example, data 

might be located in the storage nodes of the user’s local 

organizational infrastructure (e.g., a cluster or desktop grid) 

with limited or overloaded computational resources and the 

user facing deadline constraints may prefer to leverage on-

demand computing resources from a public cloud provider 

to reduce the execution time of the application. In the above 

particular scenario, it may not be ideal for the user to move 

the entire dataset to the cloud as the data transfer time, due 

to the data size and network bandwidth, might dominate 

over the performance gain resulting from utilizing external 

CPUs. Moving data to distant computational resources, in 

particular for big data and data intensive applications, to get 

access to more CPUs is often inefficient and can become 

the bottleneck in many cases. 

III. CLOUDSIM AND RESOURCE ALLOCATION 
CloudSim is a new, generalized, and extensible 

simulation framework that allows seamless modelling, 

simulation, and experimentation of emerging Cloud 

computing infrastructures and application services. By 

using CloudSim, researchers and industry-based developers 

can test the performance of a newly developed application 

service in a controlled and easy to set-up environment. 

A. Resource Allocation 

Resource Allocation means utilizing and allocating 

scarce resources within the limit of cloud environment so as 

to meet the needs of the cloud application. Clouds contain 

the virtualization layer that acts as an execution, 

management, and hosting environment for application 

services. Hence, traditional application provisioning models 

that assign individual application elements to computing 

nodes do not accurately represent the computational 

abstraction, which is commonly associated with Cloud 

resources. For example, consider cloud host that has single 

processing core. There is a requirement of concurrently 

instantiating two VMs on that host. Although in practice 

VMs are contextually isolated, still they need to share the 

processing cores and system bus. Hence, the amount of 

hardware resources available to each VM is constrained by 

the total processing power and system bandwidth available 

within the host. This critical factor must be considered 

during the VM provisioning process, to avoid creation of a 

VM that demands more processing power than is available 

within the host. In order to allow simulation of different 

provisioning policies under varying levels of performance 

isolation, CloudSim supports VM provisioning at two 

levels: first, at the host level and second, at the VM level. 

At the host level, it is possible to specify how much of the 

overall processing power of each core will be assigned to 

each VM. At the VM level, the VM assigns a fixed amount 

of the available processing power to the individual 

application services (task units) that are hosted within its 

execution engine. 
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IV. DEADLINE DRIVEN DATA-AWARE 
RESOURCE PROVISIONING ALGORITHM 

A private cloud with a limited number of resources in 

the local infrastructure is available for execution of a data 

intensive Bag-of-Tasks application. Since the number of 

tasks that can be running concurrently on the private cloud 

is limited, to meet the deadline requirement of the 

application, extra resources from the public cloud need to 

be acquired to scale out available resources. The public 

cloud provider is able to full fill all requests and thus has an 

infinite number of resources available from the user’s 

perspective. The network bandwidth available between the 

private and public cloud is limited and can impose a 

significant amount of data transfer time for each task 

running on the public cloud resource. The application’s 

workload consists of a number of trivially parallel tasks, 

each requiring specific input data files located in the local 

infrastructure. The Data-aware algorithm takes into account 

the available bandwidth and the data size associated with 

each task and calculates the number of extra resources 

required to meet the deadline constraints of the application. 

The algorithm is executed when any of the following 

conditions are observed:  

1. Task from the application is   queued 

2. Execution of a task completes. 

The Data-aware algorithm checks if the currently 

available resources are sufficient for the completion of the 

application tasks within the given deadline based on 

estimation of the average runtime of tasks on the private 

resources. The algorithm first updates remaining time based 

on the left time to the deadline. Then it computes the 

number of tasks that can be completed on the private 

resources within the left time to the deadline. Then, it 

calculates the number of remaining tasks. These remaining 

tasks must be scheduled on the dynamic resources. Since 

the execution of tasks on resources from the public cloud 

requires transferring data from the local storage to the 

allocated VMs, the algorithm first calculates the total 

transfer time for the tasks that should be executed on the 

public cloud resources. 

 
The actual remaining time which can be effectively used 

for the execution of the tasks on dynamic resources is 

computed by subtracting the total transfer time and the start-

up time of resources from the remaining time to the 

deadline. The average task runtime is only calculated based 

on the actual time tasks are being executed on the public 

cloud resources and does not include any associated data 

transfer time, i.e., it is the time period from when the task 

starts execution on the compute node (after all input data is 

Data-aware Provisioning Algorithm 
 

1. privateCores ← private cores available for the 
application; 
2. avgTaskRuntime ← Average task runtime on a prviate 
core; 
3. timeRemaining ← Time to application deadline; 
4. totalTasks ← Total number of tasks in the application; 
5. tasksCompeleted ← Total number of tasks compeleted so 
far; 
6. startupTime ← Startup time of a resource (VM); 
7. tasksInPrivate ← ⌊timeRemaining 
avgTaskRuntime × privateCores⌋; 
8. tasksRemaining = (totalTasks − tasksCompeleted − 
tasksInPrivate)+; 
9. totalTransferTime ← tasksRemaining × 
taskInputDataSize 
upBandwidth ; 
10.  actualTimeRemaining ← (timeRemaining 
−startupTime−totalTransferTime)+; 
11. avgTaskRuntimeOnPublic ← Average task runtime on 
public core; 
12. provisionedCores ← Current daynamically prorvisioned 
cores; 
13. totalExecutionTime ← tasksRemaining × 
avgTaskRuntimeOnPublic; 
14. tasksPerCore ← ⌊actualTimeRemaining 
avgTaskRuntimeOnPublic ⌋; 
15. if tasksPerCore <1 then 
16. if toGrow then 
17. totalCoresRequired ← provisionedCores; 
18. else 
19. totalCoresRequired ← provisionedCores − 1 
20.  end if 
21. else 
22. totalCoresRequired ← ⌈totalExecutionTime 
tasksPerCore×avgTaskRuntimeOnPublic ⌉; 
23. end if 
24. extraResources ← 
⌈totalCoresRequired−provisionedCores 
numberofCoresPerResource ⌉; 
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available) up to the moment its execution is over. The time 

required to execute all remaining task on a single public 

CPU core is calculated. The actual time remaining is 

divided by the average runtime of tasks on public cloud 

resources, the number of tasks each CPU core on the public 

resources can execute is calculated. If the number of tasks 

can be executed on each core in the public resources is at 

least one, then the total number of required cores can be 

estimated by dividing total execution time by the result of 

tasks per core multiplied by the average runtime of the task. 

Otherwise, there is not enough time for allocating new 

resources and the algorithm sets the number of required 

CPU cores to that of the already provisioned cores in the 

pool. Extra resources that must be added to or removed 

from the pool by the ratio of extra required cores to the 

number of cores per resource. 

V. PERFORMANCE METRICS 
Execution Time 

Prediction of execution time fast and accurately not only 

can help users to schedule jobs smarter, but also maximize 

the throughput and minimize the resource consumption of 

cloud platform. Execution time refers to the total execution 

time of the application. Two samples were taken for 

Resource 1 and the execution times were compared. It 

yields minimal execution time in both the samples.  

 

Task Remaining 

Task Remaining is the difference between total task, 

task completed and task in private. Total task evaluates the 

total number of task available. Task completed involves the 

number of task that has been completed. Task in private 

involves the number of task in the private cores. 

Actual Time Remaining 

Actual time remaining is the difference between the 

time remaining, start up time and total transfer time gives 

the actual time remaining. 

Experimental Results 

The preliminary experiment, estimates that the expected 

execution time of the application, which allows us to 

impose a deadline triggering the resource provisioning in 

other experiments. The key reason is that these algorithms 

rely on only a single variable for measuring average runtime 

of tasks to allocate dynamic resources that is significantly 

different in our scenario for private and public cloud 

resources. This difference is due to the dissimilarity of the 

data transfer time for the tasks executed on the private and 

public cloud resources which is dependent on the difference 

in the available bandwidth for each case. We conclude that 

our new algorithm is able to meet strict application 

deadlines by taking into account the start-up time of the 

VMs and data transfer time. 

VI. CONCLUSION AND FUTURE WORK 
This paper presents a provisioning algorithm for 

scheduling deadline-constrained data-intensive applications 

while taking into account aspects such as data transfer time, 

the location of data, and the network bandwidth. This work 

builds upon previously proposed provisioning algorithms 

for the CloudSim platform for developing and deploying 

scalable applications on the cloud. In this work, we propose 

a provisioning algorithm that computes the extra resources 

needed to complete application tasks within deadlines by 

considering aspects such as data locality, start up time of 

public cloud resources, network bandwidth, and data 

transfer time. We demonstrate that our proposed algorithm 

is able to meet strict deadlines for a sample data-intensive 

application while minimizing cost and the total number 

launched instances compared to other existing algorithms. 
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Contrary to other algorithms, the proposed algorithm 

measures the average runtime of tasks on public cloud 

resources as a separate variable and takes the data transfer 

time calculated based on the available bandwidth into 

account. 

The future work is to extend our proposed algorithm for 

workflows with data dependencies. This is a complex 

problem and the major challenge in the design of such 

algorithms in addition to consideration of data transfer time 

and data locality is how to devise the task grouping and task 

assignment techniques that minimize inter cloud 

communications. 
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