
Journal on Science Engineering and Technology
Vo1ume 5, No. 01, March 2018 98

Abstract--- Cloud computing has emerged as a

mainstream paradigm for hosting various types of

applications by supporting easy-to-use computing services.

They are particularly relevant for applications requiring

large volumes of computing power exceeding the

computational capacity However, the use of hybrid clouds

introduces the challenge of how much and when public

cloud resources should be added to the pool of resources

and especially when it is necessary to support quality of

service requirements of applications with deadline

constraints. These resource provisioning decisions are far

from trivial if scheduling involves data-intensive

applications using voluminous amounts of data. Issues such

as the impact of network latency, bandwidth constraints,

and location of data must be taken into account in order to

minimize the execution cost while meeting the deadline for

such applications. In this paper, we propose a new resource

provisioning algorithm to support the deadline requirements

of data-intensive applications in hybrid cloud environments.

To evaluate our proposed algorithm, we implement it in the

CloudSim which proves our resource provisioning

algorithm is able to more efficiently allocate resources in

cost effective manner compared to existing methods.

I. INTRODUCTION
Data-intensive applications involving the analysis of

large datasets have become increasingly important as many

G. Supriya, Student, Department of CSE, Kongu Engineering College,
Erode, Tamil Nadu.

N. Subha Lakshmi, Student, Department of CSE, Kongu Engineering
College, Erode, Tamil Nadu.

V. Vigneshkumar, Student, Department of CSE, Kongu Engineering
College, Erode, Tamil Nadu.

C. Sagana, Assistant Professor, Department of CSE, Kongu
Engineering College, Erode, Tamil Nadu.

areas of science and business are facing thousand-fold

increases in data volumes [1]. The explosive growth of data

is mainly driven by the rapid expansion of the Internet,

smart cities, social networks, e-commerce, and widespread

usage of high-throughput instruments, sensor networks,

Internet of Things devices, accelerators, and

supercomputers. This expansion forms a voluminous

amount of structured and unstructured data, known as big

data that needs to be processed to be useful [1]. The ability

to analyze and process such large quantities of data has

become an important and challenging mission for many

fields. Cloud computing [2] platforms are becoming one of

the most preferred ways of hosting data-intensive

applications. Challenges posed by big data can be overcome

with the aid of cloud computing services offering the

illusion of an infinite pool of highly reliable, scalable, and

flexible computing, storage, and network resources.

However, in many cases, data isavailable in local IT

infrastructure with limited processing capacity. Therefore, it

is not time or cost effective to transfer the whole dataset to

clouds to be processed. To tackle this issue, the cloud

bursting model can be used in which an application runs in

a private infrastructure and bursts onto a public cloud when

more resources are required. This model has found broad

acceptance due to its benefits such as cost reduction and

dealing with issues related to the location of sensitive data

[3]. To achieve the vision of cloud bursting, hybrid cloud

middleware is required to acquire and release resources

from both local infrastructures and external cloud providers

in a seamless fashion [4]. It is essential for such hybrid

cloud middleware to make efficient decisions regarding the

workloads that must be outsourced to the public cloud based

Cost Effective Resource Allocation for
Applications with Deadline Constraints Using

CloudSim
G. Supriya, N. Subha Lakshmi, V. Vigneshkumar and C. Sagana

ISSN: 2349-6657 @ JSET

Journal on Science Engineering and Technology
Vo1ume 5, No. 01, March 2018 99

on the timing and number of externally provisioned

resources to meet deadline constraints of applications. In

such a setting, however, building a middleware that jointly

minimizes cost and meets the deadline for applications is far

from trivial [5]. There is a large body of literature aimed at

cost and execution time minimization of running

computational tasks in hybrid cloud environments. These

studies mostly overlook aspects such as data locality, the

impact of network bandwidth constraints, and data transfer

time which significantly affect the time and cost

performance of the scheduling. This is exacerbated for data

intensive applications where the data transfer time to the

external cloud is often comparable to the computational

time. In this paper, one of our main goals is to take these

aspects into consideration for scheduling and resource

provisioning of deadline-driven data intensive applications

in hybrid cloud environments.

II. PROBLEM DOMAIN
One of the main challenges for efficient scaling of

applications is the location of the data relative to the

available computational resources [6]. Co-locating data and

computation is evidently ideal in terms of performance

especially for data-intensive applications. However, this is

not always feasible for various reasons. For example, data

might be located in the storage nodes of the user’s local

organizational infrastructure (e.g., a cluster or desktop grid)

with limited or overloaded computational resources and the

user facing deadline constraints may prefer to leverage on-

demand computing resources from a public cloud provider

to reduce the execution time of the application. In the above

particular scenario, it may not be ideal for the user to move

the entire dataset to the cloud as the data transfer time, due

to the data size and network bandwidth, might dominate

over the performance gain resulting from utilizing external

CPUs. Moving data to distant computational resources, in

particular for big data and data intensive applications, to get

access to more CPUs is often inefficient and can become

the bottleneck in many cases.

III. CLOUDSIM AND RESOURCE ALLOCATION
CloudSim is a new, generalized, and extensible

simulation framework that allows seamless modelling,

simulation, and experimentation of emerging Cloud

computing infrastructures and application services. By

using CloudSim, researchers and industry-based developers

can test the performance of a newly developed application

service in a controlled and easy to set-up environment.

A. Resource Allocation

Resource Allocation means utilizing and allocating

scarce resources within the limit of cloud environment so as

to meet the needs of the cloud application. Clouds contain

the virtualization layer that acts as an execution,

management, and hosting environment for application

services. Hence, traditional application provisioning models

that assign individual application elements to computing

nodes do not accurately represent the computational

abstraction, which is commonly associated with Cloud

resources. For example, consider cloud host that has single

processing core. There is a requirement of concurrently

instantiating two VMs on that host. Although in practice

VMs are contextually isolated, still they need to share the

processing cores and system bus. Hence, the amount of

hardware resources available to each VM is constrained by

the total processing power and system bandwidth available

within the host. This critical factor must be considered

during the VM provisioning process, to avoid creation of a

VM that demands more processing power than is available

within the host. In order to allow simulation of different

provisioning policies under varying levels of performance

isolation, CloudSim supports VM provisioning at two

levels: first, at the host level and second, at the VM level.

At the host level, it is possible to specify how much of the

overall processing power of each core will be assigned to

each VM. At the VM level, the VM assigns a fixed amount

of the available processing power to the individual

application services (task units) that are hosted within its

execution engine.

ISSN: 2349-6657 @ JSET

Journal on Science Engineering and Technology
Vo1ume 5, No. 01, March 2018 100

IV. DEADLINE DRIVEN DATA-AWARE
RESOURCE PROVISIONING ALGORITHM

A private cloud with a limited number of resources in

the local infrastructure is available for execution of a data

intensive Bag-of-Tasks application. Since the number of

tasks that can be running concurrently on the private cloud

is limited, to meet the deadline requirement of the

application, extra resources from the public cloud need to

be acquired to scale out available resources. The public

cloud provider is able to full fill all requests and thus has an

infinite number of resources available from the user’s

perspective. The network bandwidth available between the

private and public cloud is limited and can impose a

significant amount of data transfer time for each task

running on the public cloud resource. The application’s

workload consists of a number of trivially parallel tasks,

each requiring specific input data files located in the local

infrastructure. The Data-aware algorithm takes into account

the available bandwidth and the data size associated with

each task and calculates the number of extra resources

required to meet the deadline constraints of the application.

The algorithm is executed when any of the following

conditions are observed:

1. Task from the application is queued

2. Execution of a task completes.

The Data-aware algorithm checks if the currently

available resources are sufficient for the completion of the

application tasks within the given deadline based on

estimation of the average runtime of tasks on the private

resources. The algorithm first updates remaining time based

on the left time to the deadline. Then it computes the

number of tasks that can be completed on the private

resources within the left time to the deadline. Then, it

calculates the number of remaining tasks. These remaining

tasks must be scheduled on the dynamic resources. Since

the execution of tasks on resources from the public cloud

requires transferring data from the local storage to the

allocated VMs, the algorithm first calculates the total

transfer time for the tasks that should be executed on the

public cloud resources.

The actual remaining time which can be effectively used

for the execution of the tasks on dynamic resources is

computed by subtracting the total transfer time and the start-

up time of resources from the remaining time to the

deadline. The average task runtime is only calculated based

on the actual time tasks are being executed on the public

cloud resources and does not include any associated data

transfer time, i.e., it is the time period from when the task

starts execution on the compute node (after all input data is

Data-aware Provisioning Algorithm

1. privateCores ← private cores available for the
application;
2. avgTaskRuntime ← Average task runtime on a prviate
core;
3. timeRemaining ← Time to application deadline;
4. totalTasks ← Total number of tasks in the application;
5. tasksCompeleted ← Total number of tasks compeleted so
far;
6. startupTime ← Startup time of a resource (VM);
7. tasksInPrivate ← ⌊timeRemaining
avgTaskRuntime × privateCores⌋;
8. tasksRemaining = (totalTasks − tasksCompeleted −
tasksInPrivate)+;
9. totalTransferTime ← tasksRemaining ×
taskInputDataSize
upBandwidth ;
10. actualTimeRemaining ← (timeRemaining
−startupTime−totalTransferTime)+;
11. avgTaskRuntimeOnPublic ← Average task runtime on
public core;
12. provisionedCores ← Current daynamically prorvisioned
cores;
13. totalExecutionTime ← tasksRemaining ×
avgTaskRuntimeOnPublic;
14. tasksPerCore ← ⌊actualTimeRemaining
avgTaskRuntimeOnPublic ⌋;
15. if tasksPerCore <1 then
16. if toGrow then
17. totalCoresRequired ← provisionedCores;
18. else
19. totalCoresRequired ← provisionedCores − 1
20. end if
21. else
22. totalCoresRequired ← ⌈totalExecutionTime
tasksPerCore×avgTaskRuntimeOnPublic ⌉;
23. end if
24. extraResources ←
⌈totalCoresRequired−provisionedCores
numberofCoresPerResource ⌉;

ISSN: 2349-6657 @ JSET

Journal on Science Engineering and Technology
Vo1ume 5, No. 01, March 2018 101

available) up to the moment its execution is over. The time

required to execute all remaining task on a single public

CPU core is calculated. The actual time remaining is

divided by the average runtime of tasks on public cloud

resources, the number of tasks each CPU core on the public

resources can execute is calculated. If the number of tasks

can be executed on each core in the public resources is at

least one, then the total number of required cores can be

estimated by dividing total execution time by the result of

tasks per core multiplied by the average runtime of the task.

Otherwise, there is not enough time for allocating new

resources and the algorithm sets the number of required

CPU cores to that of the already provisioned cores in the

pool. Extra resources that must be added to or removed

from the pool by the ratio of extra required cores to the

number of cores per resource.

V. PERFORMANCE METRICS
Execution Time

Prediction of execution time fast and accurately not only

can help users to schedule jobs smarter, but also maximize

the throughput and minimize the resource consumption of

cloud platform. Execution time refers to the total execution

time of the application. Two samples were taken for

Resource 1 and the execution times were compared. It

yields minimal execution time in both the samples.

Task Remaining

Task Remaining is the difference between total task,

task completed and task in private. Total task evaluates the

total number of task available. Task completed involves the

number of task that has been completed. Task in private

involves the number of task in the private cores.

Actual Time Remaining

Actual time remaining is the difference between the

time remaining, start up time and total transfer time gives

the actual time remaining.

Experimental Results

The preliminary experiment, estimates that the expected

execution time of the application, which allows us to

impose a deadline triggering the resource provisioning in

other experiments. The key reason is that these algorithms

rely on only a single variable for measuring average runtime

of tasks to allocate dynamic resources that is significantly

different in our scenario for private and public cloud

resources. This difference is due to the dissimilarity of the

data transfer time for the tasks executed on the private and

public cloud resources which is dependent on the difference

in the available bandwidth for each case. We conclude that

our new algorithm is able to meet strict application

deadlines by taking into account the start-up time of the

VMs and data transfer time.

VI. CONCLUSION AND FUTURE WORK
This paper presents a provisioning algorithm for

scheduling deadline-constrained data-intensive applications

while taking into account aspects such as data transfer time,

the location of data, and the network bandwidth. This work

builds upon previously proposed provisioning algorithms

for the CloudSim platform for developing and deploying

scalable applications on the cloud. In this work, we propose

a provisioning algorithm that computes the extra resources

needed to complete application tasks within deadlines by

considering aspects such as data locality, start up time of

public cloud resources, network bandwidth, and data

transfer time. We demonstrate that our proposed algorithm

is able to meet strict deadlines for a sample data-intensive

application while minimizing cost and the total number

launched instances compared to other existing algorithms.

0

2

4

6

8

10

1 2 3 4 5

Ex
ec

ut
io

n
Ti

m
e

(m
in

)

Tasks

Resource (Iteration 1)

Resource (iteration 2)

ISSN: 2349-6657 @ JSET

Journal on Science Engineering and Technology
Vo1ume 5, No. 01, March 2018 102

Contrary to other algorithms, the proposed algorithm

measures the average runtime of tasks on public cloud

resources as a separate variable and takes the data transfer

time calculated based on the available bandwidth into

account.

The future work is to extend our proposed algorithm for

workflows with data dependencies. This is a complex

problem and the major challenge in the design of such

algorithms in addition to consideration of data transfer time

and data locality is how to devise the task grouping and task

assignment techniques that minimize inter cloud

communications.

REFERENCES
[1] C.P. Chen and C.Y. Zhang, “Data-intensive

applications, challenges, techniques and
technologies: a survey on big data”, Inform.
Sci.,Vol. 275, Pp. 314–347, 2014.

[2] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg and
I. Brandic, “Cloud computing and emerging IT
platforms: Vision, hype, and reality for delivering
computing as the 5th utility”, Future Gener.
Comput. Syst., Vol. 25, No. 6, Pp. 599–616, 2009.

[3] X. Xu and X. Zhao, “A framework for privacy-
aware computing on hybrid cloudswith mixed-
sensitivity data”, Proceedings of the IEEE
International Symposium on Big Data Security on
Cloud, Pp. 1344–1349, 2015.

[4] R.N. Calheiros, C. Vecchiola, D. Karunamoorthy
and R. Buyya, “The Aneka platform and QoS-
driven resource provisioning for elastic
applications on hybrid clouds”, Future Gener.
Comput. Syst., Vol. 28, No. 6, Pp. 861–870, 2012.

[5] R.V. den Bossche, K. Vanmechelen and
J. Broeckhove, “Online cost-efficient scheduling of
deadline-constrained workloads on hybrid clouds”,
Future Gener. Comput. Syst., Vol. 29, No. 4,
Pp. 973–985, 2013.

[6] I. Foster, Y. Zhao, I. Raicu and S. Lu, “Cloud
computing and grid computing 360-degree
compared”, Proceedings of Grid Computing
Environments Workshop, Pp. 1–10, 2008.

[7] F.A. da Silva and H. Senger, “Scalability limits of
bag-of-tasks applications running on hierarchical
platforms”, J. Parallel Distrib. Comput, Vol. 71,
No. 6, Pp. 788–801, 2011.

[8] R.O. Sinnott, C. Bayliss, A. Bromage, G. Galang,
G. Grazioli, P. Greenwood, A. Macaulay, L.
Morandini, G. Nogoorani, M. Nino-Ruiz, M.
Tomko, C. Pettit, M. Sarwar, R. Stimson,
W. Voorsluys and I. Widjaja, “The Australia urban

research gateway”, Concurr. Comput.: Pract.
Exper, Vol. 27, No.2, Pp. 358–375, 2015.

[9] M. Amiri and L. Mohammad-Khanli, “Survey on
prediction models of applications for resources
provisioning in cloud”, Journal of Network and
Computer Applications, Vol. 82, Pp.93-113, 2017.

ISSN: 2349-6657 @ JSET

	Introduction
	Problem Domain
	Cloudsim and Resource Allocation
	Resource Allocation

	Deadline Driven Data-aware Resource Provisioning Algorithm
	Performance Metrics
	Execution Time
	Task Remaining
	Actual Time Remaining
	Experimental Results

	Conclusion and Future Work
	References

