Volume 5 - Issue 1
Twitter Trends Manipulation: Credibility Analysis for Twitter Trending
Abstract
Information credibility on Twitter has been a topic of interest among researchers in the fields of both computer and social sciences, primarily because of the recent growth of this platform as a tool for information dissemination. Twitter has made it increasingly possible to offer near-real-time transfer of information in a very cost-effective manner. It is now being used as a source of news among a wide array of users around the globe. The beauty of this platform is that it delivers timely content in a tailored manner that makes it possible for users to obtain news regarding their topics of interest. Consequently, the development of techniques that can verify information obtained from Twitter has become a challenging and necessary task. In this paper, we propose a new credibility analysis system for assessing information credibility on Twitter to prevent the proliferation of fake or malicious information. The proposed system consists of four integrated components: a reputation-based component, a credibility classifier engine, a user experience component, and a feature-ranking algorithm. The components operate together in an algorithmic form to analyze and assess the credibility of Twitter tweets and users. We tested the performance of our system on two different datasets from 489,330 unique Twitter accounts. We applied 10-fold cross-validation over four machine learning algorithms. The results reveal that a significant balance between recall and precision was achieved for the tested dataset.
Paper Details
PaperID: 1841013
Author Name: K. Kumaresan, G.S. Rizwana Banu, Dr.E. Baby Anitha, M. Pavithra, S. Priya, R. Surjith Kumar and S. Keerthana
Author Email: -
Phone Number: -
College: K.S.R College of Engineering, Tiruchengode, Namakkal.
Country: India
Keywords: Credibility, Reputation, Classification, User Experience, Feature-ranking, Twitter.
Volume: Volume 5
Issues: Issue 1
Issue Type: Issue
Year: 2018
Month: March
Pages:103-106